

Your Fixing Systems Specialist

Anchor Channel Systems Technical Product Catalogue HAZ-CI-EN/04.20



Contents

Company Profile	1
HMPR-CE Anchor Channels Introduction	3
ETA - European Technical Approval	5
Product Verification according to ETA	6
HMPR-CE Anchor Channels Systems Product Range	7
HMPR-CE Anchor Channels Standard Lengths	9
HMPR-CE Anchor Spacing & Minimum Edge Distances	10
HMPR-CE Installation detail & section views	11
HMPR-CE Marking & Material grade	12
HMPR-CE Compatable T head Bolt Dimensions	13
HMPR-CE Compatible T head Bolt Load Properties	14
HMPR-CE Anchor Channels Load Tables	15
HMPR-CE Anchor Channels Technical Summary	16
HMPR Power Anchor Channels Technical Summary	17
HMPR Power Anchor Channels Dynamic Loads	18
HMPR-CE Anchor Channels Dimensioning Principles	19
Methods of Verification Against Failures	20
Quality Assurance Control	21
HMPR-CE Installation Information	23
Special Types of Anchor Channels	25
Anchor Channels for Metal Decks	27

Anchor Channels for Balustrades	28
HAZ-TU Anchor Channels for Profiled Sheets Introduction	29
HAZ-TU Anchor Channels Product Details	30
HAZ-TU Anchor Channels Technical Details	31
HAZ- TU SL Self Locking Anchor Channels Product Details	32
HPLS Anchor Plates Product Details	32
HWT Wall Tie Introduction & Details	33
HWT Wall Ties Product Details	34
HWT-M Wall Ties for Masonry & MAS Brick Tie Channel Int.	35
HWT-M Wall Ties For Masonry Product Details	36
HTB T Bolts & HMLN Lock Nuts Introduction	37
HTB T Bolts & HMLN Lock Nuts Technical Details	38
HTB T Bolts Product Details	39
HMLN Lock Nuts Product Details	40
Anchor Channel Application Examples	41
HFB Facade Brackets	43
HAZ-RBX Recess Box Anchor Channels	45
Anchor Channels Application Pictures	46
References	47

• HAZ Metal Sanayi ve Ticaret A.S. All rights reserved. April 2020. Reproduction and distribution of the information contained in this catalogue is forbidden without prior written consent. HAZ[®] Copyright.

Company Profile

Introduction

HAZ Metal A.S. is located in Iskenderun, in the southern part of Turkey, based in their own property of 17.000 square meters.

The company provides services in the design and production of fixing systems for facade cladding, framing channel systems, brick support systems, anchor channels and a variety of products used in facade construction.

The company's objective is to assist and advise its clients in choosing the most suitable fixing systems for their requirements and to provide them with quality production and supply with timely deliveries.

The innovative design and production techniques offer practical and economic solutions to solve every possible problem within the scope of fixing applications in facade construction.

As a manufacturer of fixing systems to major projects around the world, HAZ Metal has proven its quality and reliability to its clients. The company enjoys serving the sector and works hard to constantly improve and develop its services.

HAZ Metal is dedicated to achieving the highest level of customer satisfaction and is always in constant contact with its clients in order to better understand their requirements and to offer the services required for design and production of fixing systems.

Channel Production

The production of anchor channels has been made in HAZ Metal since the year 2001.

Throughout the years, production techniques and methods have been improved to achieve higher quality and productivity. Haz Metal today implements modern technology in the production of channels in order to meet the requirements of the industry.

The channel production unit at the factory, is equipped with a coil slitting machine, channel roll formers, press breaks and production units with 250 ton eccentric presses used for the pressing of the studs on to the channels. Hot dip galvanizing with over 50 micro thick zinc coating and electro-galvanizing with 12 micro thick zinc coating on mild steel is made by prequalified sources outside of the factory.

The presence of a work shop with the capability of preparing and maintaining the required moulding and tooling, provides flexible production. The urgent preparations, maintenance, revision and adjustment of machines and tooling are made without interrupting the production process which leads to saving time and costs.

The production is strictly controlled with periodic in house testing of both raw materials and finished products, in order to maintain the performance of HAZ products and to fulfil the safety requirements for use in the construction industry.

Production Capacity

HAZ Metal is capable of producing a minimum of three thousands six hundreds metric tonnes of anchor channels yearly.

Roll forming technology is used to produce cold roll formed channels. Anchor studs are cold forged with bolt maker machines. Swaging of the anchor studs on to the channels is done with fully automated lines to achieve the highest quality standards.

To achieve the highest quality standards in our production, most of the production is made with fully automated lines, PLC systems that has significant precision and accuracy, so as to reduce human errors.

The factory is one of the few manufacturers which produces it's own dies and moulds. This ensures high quality and flexibility with results in high competitiveness in pricing and lead time.

Technical Know-How

HAZ Metal has a dedicated and professionally trained team which emphasizes in improving the efficiency and effectiveness of their production.

Technical training is conducted regularly to ensure that technical know-how of the production and engineering processes persists within the organization.

Quality Standards

HAZ Metal adopts EN standards in the production of channels. Production is strictly controlled in accordance with these standards.

To achieve its objectives and maintain high level of consistency, HAZ Metal adopts the highest international standards and global best practice.

The company quality management system complies with the requirements of ISO 9001:2008. A quality assurance system and controlled checks are documented in the manufacturing process.

Coil slitting line

22 stand channel rolling machine

16 stand channel rolling machine

Automated stamping unit

Your Fixing Systems Specialist

HAZ Metal is certified with integrated management systems by TUV SUD for ISO 9001:2008, ISO 14001:2004 & OHSAS 18001:2007 standards

HMPR-CE Anchor Channels - Introduction

HMPR-CE Anchor Channels are rolled channels with swaged studs that are used for connections made to concrete structures. This system allows easy and safe fixations to structures such as concrete slabs, beams and columns.

HTB T head bolts and HMLN lock nuts are used to allow secure and easy connections on to anchor channels. The use of this system is applicable in a wide range of construction works.

Features of HMPR-CE anchor channels are as follows:

• HMPR-CE Anchor channels are designed in accordance with the design rules of EOTA TR 047 and DIN EN 1992-4:2019

• HMPR-CE Anchor channels allow users working with low edge distances.

• Load resistances can be improved by using higher concrete strength class on loading.

• Shear and tensile resistance in concrete can be improved with additional reinforcement.

HMPR-CE Anchor channels are manufactured by HAZ Metal A.S. in Turkey with engineering and product development provided from its sister company in Germany, HAZ Deutschland GmbH. Since 2004 HAZ Metal has built an effective product development system to increase the integrity of its products and production procedures.

HMPR-CE channels have been tested in IFBT Leipzig in accordance to the EOTA guidelines and have received good results. The HMPR-CE anchor channels have been awarded an ETA certificate as well as German national approval.

HMPR-CE anchor channels can be used safely and efficiently with the following features:

- Quality production with strict control according to European requirements
- Management and Service quality certified by ISO 9001:2015

• Euro code compatible design and product dimensioning using product selection software which is available upon request

• Customized design in providing solutions to meet special product requirements which is provided by the companies design & engineering department.

HAZ Metal management system is certified to ISO 9001:2015 standards by TUV SUD

HMPR Cold rolled anchor channels

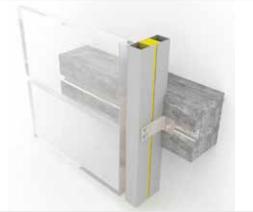
• HMPR-S Toothed, cold rolled anchor channels

• HMPR-H Hot rolled anchor channels

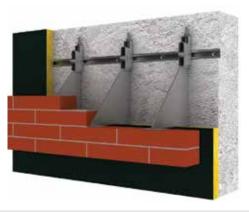
HMPR-CE Anchor Channels - Introduction

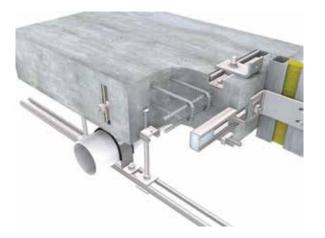
Advantages

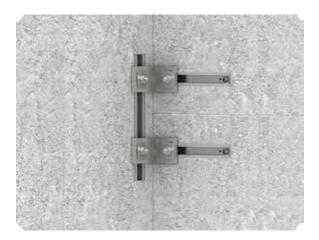
- No drilling on siteQuick and easy fixing
- Fixing without damaging
- concrete
- Adjustable and flexibleSafe near edges on
- concrete
- · High load capacity
- Fixing without electrical tools
- Safe and secure fixing
- No dust particles falling onto facade
- No electricity needed
- Easy connections with T head bolts and lock nuts
- Compensation of tolerances
 of the structure
- Fixtures are removable and new fixing can be made


Planning

Careful planning needs to be done prior to concrete casting. Anchor channel types should be determined according to the load capacities, edge distances, area of applications etc. Anchor channel positioning should be incorporated in to the shop drawings of the form works in order to provide clear instructions for installation on site.


Brick walls are installed using special support brackets that are fixed on to the anchor channels using T head bolts. A continuous anchor channel embedded into the concrete wall provides high adjustability and enables quick installation of the masonry brackets. Anchor channels cover the load capacity requirements for the brickwork installation.


Anchor channels are widely used for the installation of curtain walls. Unitised panels with materials such as glass and natural stone already incorporated are preassembled in to the curtain wall panels. These panels are erected to the buildings elevation and are quickly and easily fixed on to the anchor channels using T head bolts and special brackets.



Anchor channels are used for a variety of construction applications which require attachments made on to concrete. Pipe and duct installation and the installation of electrical wiring are the most common applications that are made using anchor channels.

The prefabricated concrete industry is among the fastest growing fields within the construction industry. The use of anchor channels enhance the fast and economical solutions that are offered using prefabricated concrete panels. Speed and security are the benefits of using anchor channels.

ETA - European Technical Assessment

European Technical Assessment ETA

In June 2013 HMPR-CE anchor channels have been certified with an ETA certificate from DIBT (German Institute of Building Technology). HMPR-CE anchor channels are Euro code compatible that can be designed and dimensioned according to EOTA TR 047 and DIN EN 1992-4:2019 with the approved loadings in the HAZ ETA assessment. The channels that are dimensioned according to EOTA TR 047 and DIN EN 1992-4:2019 are distinguished with a code HMPR-CE and the products are stamped with the CE marking.

The ETA approval includes thorough specifications on internal and third party quality control of an on-going production. Therefore quality assurance is in place to be certain that the quality of the HMPR-CE channels correspond with the samples tested during the approval procedure.

European Standard EOTA TR 047 and DIN EN 1992-4:2019

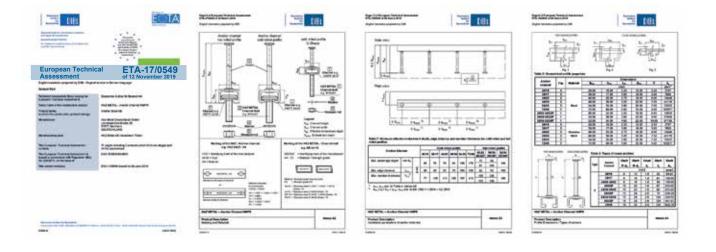
The European EOTA standard has been implemented for the purpose of standardising the dimensioning of fastenings used for concrete structures. Any connections in to concrete such as anchor bolts and anchor channels are regulated with this standard.

Benefits of using HMPR-CE Anchor Channels

A comprehensive test program is conducted on the products in accordance to the new guidelines of ETA. Channels are wet tested to consider failure loads on channels, studs and concrete in various situations such as load direction and reduced edge distances.

With the resistance loads derived from extensive testing, greater flexibility is achieved in the design of connections into concrete. Regarding whether the concrete is reinforced or non-reinforced, cracked or uncracked, load carrying connections can be provided. Therefore numerous options are achieved which influence the results. These values can be used to achieve the most economic and effective solution for the application at hand.

The advantages of the HMPR-CE channels can be summarized as below:


- · Possibility to consider various concrete strength classes
- Recognizing reinforcement when designing the location of the anchor channel
- Highest cost effectiveness in choosing the most effective selection
- · Small edge distances are possible with verified loadings
- Increased loads with additional or closely positioned reinforcements
- Optimised design by taking into account concrete strength, reinforcement lay out and component thickness

ETA - European Technical Assessment

Œ

The European Technical Assessment ETA- 17/0549 for the HMPR-CE Anchor Channels was issued by the Deutsches Institut für Bautechnik (DIBt) in 2019. This new assessment is valid on all states of Europe.

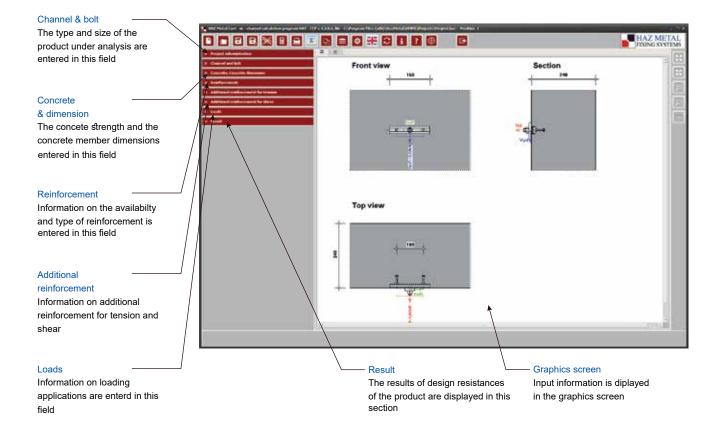
This ETA catalogue includes the dimensioning of the anchor channels in accordance with the new European standards series EOTA TR 047 and DIN EN 1992-4:2019 "Design of fastenings for use in concrete - Anchor Channels".

Product Verification Method according to ETA

EOTA TR 047 and DIN EN 1992-4:2019

EOTA TR 047 and DIN EN 1992-4:2019 lays down a newly developed method for the design and dimensioning of anchor channels. The verification guideline is shown in the following table.

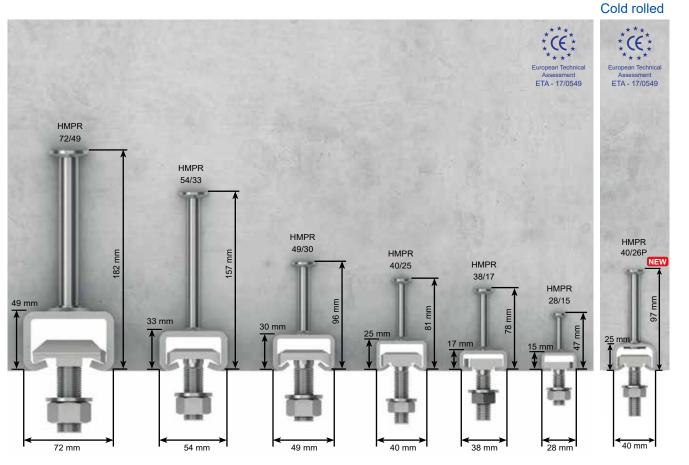
Verifications	s for HMPR-CE anchor cha	annels acc. to EOT	A TR 047 and I	DIN EN 1992-4:2019	
	Tension Loading			Shear Loading	
Failure Mode			Failure Mode		
	Anchor	N ^a _{Ed} ≤ N ^a _{Rd,s,a}		Anchor	$V^{a}_{Ed} \leq V^{a}_{Rd,s,a}$
	Connection between anchor and channel	N ^a _{Ed} ≤ N ^a _{Rd,s,c}	Steel Failure	Connection between anchor and channel	V ^a _{Ed} ≤ V ^a _{Rd,s,c}
Steel Failure	Local flexure of channel lip	$N_{Ed} \le N^a_{Rd,s,l}$		Local flexure of channel lip	V _{Ed} ≤ V ^a _{Rd,s,l}
	Special screw	N _{Ed} ≤ N ^a _{Rd,s,s}		Special screw	V _{Ed} ≤ V ^a _{Rd,s,s}
	Flexure of channel	$M_{Ed} \le M_{Rd,s,flex}$	Pry-out failure		V _{Ed} ≤ V ^a _{Rd,cp}
Pull-out failure	Pull-out failure		Conorata adaa	failura	1/a ~ 1/a
Concrete cone	Concrete cone failure		 Concrete edge 	V ^a _{Ed} ≤ V ^a _{Rd,c}	


* On verification table, N_{Ed} and V_{Ed} loads represent design tensile and shear loads of channels which act on the bolt, while N^{a}_{Ed} and V^{a}_{Ed} are the loads that result on studes of the channel.

* All proofs of failure types should be checked acc. to verification table.

Dimensioning Software

The new HAZ CCP (Anchor Channel Calculation Program) for calculating HAZ Anchor channels with rules of European Technical Assessment (ETA) is a convenient and very powerful tool for users.


With this program, users will be able to design channels in a few seconds concerning with various parameters such as concrete grade, small edge distances, additional reinforcements, loads types and so on. That would require an optimum design for the user.

HMPR-CE Anchor Channels - Product Range

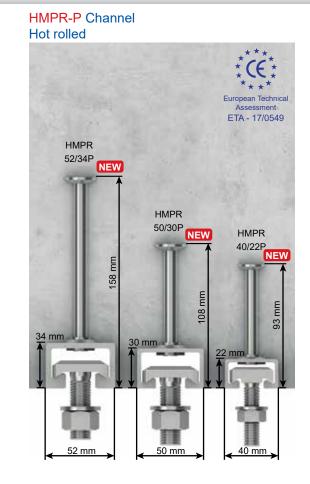
HMPR - Cold rolled anchor channels

HMPR-P Channel

HMPR Cold rolled channels are suitable to with stand static loads and HMPR-P channels are suitable to with stand dynamic loads. The range available can cover resistance loads ($N_{Rd} = V_{Rd}$) between 7,22 kN and 50,56 kN. Channels are available in stainless steel 1.4301 & 1.4401 and hot dip galvanised mild steel 1.0038 & 1.0976 (S235JR & S355MC).

Product Code	HMPR-CE 72/49	HMPR-CE 54/33	HMPR-CE 49/30	HMPR-CE 40/25	HMPR-CE 38/17	HMPR-CE 28/15	HMPR-CE 40/26P
Channel Section	72/49	54/33	49/30	40/25	38/17	28/15	40/26P
Load Capacity (kN) ^N Rd = ^V Rd Steel / <i>Stainless steel</i>	45 / 50.5	41.67 / 36.6	17.2 / 25	12.2 / 15	10.5 / 12.2	7.2 / 8.3	12.66 / -
Channel Flexure (Nm) Steel / Stainless steel ^M Rd,s,flex	9868 / 6408	2832 / 2696	1646 / 1600	1179 / 911.3	517.4 / 566.1	303.5 / 302.6	911.3 / -

Product Code		IAZ-H ITB-7	-		AZ-H ITB-5	-		AZ-H ITB-5			IAZ-H <i>ITB-4</i>	-		AZ-H ITB-3	-		IAZ-H 1TB-2	-		AZ-H ITB-4	
Metric Size	M20	M24	M30	M12	M16	M20	M12	M16	M20	M10	M12	M16	M10	M12	M16	M8	M10	M12	M10	M12	M16
T.Bolt min spacing (mm) S _{slb}	100	120	150	60	80	100	60	80	100	50	60	80	50	60	80	40	50	60	50	60	80


HMPR & HMPR-P Anchor Channels - Product Range

mm

8

40 mm

HMPR Hot rolled European Technica Assessment ETA - 17/0549 HMPR 52/34 HMPR 50/30 HMPR mm 40/22 157 96 mm <u>34 mm</u> 30 mm 22 mm

HMPR Hot rolled channels are suitable to with stand dynamic loads as well as static loads. These channels are available in hot dip galvanized and mild steel finish 1.0038 (S235JR)

50 mm

52 mm

HMPR-P Hot rolled "powered" channels. HMPR-P channels are suitable to with stand dynamic loads. These channels are available in hot dip galvanised and mild steel finish 1.0038 cold rolled channels is available in 1.4301 & 1.4401 and hot dip galvanised mild steel 1.0038 (ST37JR).

Product Code	HMPR-CE 52/34	HMPR-CE 50/30	HMPR-CE 40/22	HMPR-CE 52/34P	HMPR-CE 50/30P	HMPR-CE 40/22P
Channel Section	52/34	50/30	40/22	52/34P	50/30P	40/22P
Load Capacity (kN) ^N Rd = ^V Rd Steel	29.8	18.17	12.61	28.67	22.33	13.22
Channel Flexure (Nm) Steel ^M Rd,s,flex	2440	2704	1261	2440	2704	1261

Product Code	HAZ-HS HTB-50		HAZ-HS HTB-50			HAZ-HS HTB-40			HAZ-HS HTB-50				AZ-HS		HAZ-HS HTB-40			
Metric size	M12	M16	M20	M12	M16	M20	M10	M12	M16	M10	M12	M16	M10	M12	M16	M10	M12	M16
T.Bolt min spacing (mm) S _{SIb}	60	80	100	60	80	100	50	60	80	50	60	80	50	60	80	50	60	80

HMPR-CE Anchor Channels - Standard Lengths

Standard Channel Lengths

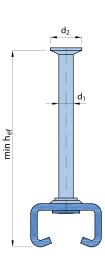

The list of the standard product range is showed on the table in accordance with European Technical Approval requirements. Other lengths and anchor numbers can be supplied depending on request.

For further information please contact us.

Product L	ength Ran	ge of HAZ	HMPR-CE	Anchor Ch	annels - Le	ngth / Num	ber of Anc	hors					
Cold Roll	ed Channe	ls					Hot Rolle	d Channel	5				Cold Rol.
HMPR-CE 72/49	HMPR-CE 54/33	HMPR-CE 49/30	HMPR-CE 40/25	HMPR-S 41/22	HMPR-CE 38/17	HMPR-CE 28/15	HMPR-CE 54/30	HMPR-CE 50/30	HMPR-CE 40/22	HMPR-CE 54/30P	HMPR-CE 50/30P	HMPR-CE 40/22P	HMPR-CE 40/26P
170/2	170/2	150/2	150/2	150/2	100/2	100/2	170/2	150/2	150/2	170/2	150/2	150/2	150/2
200/2	200/2	200/2	200/2	200/2	150/2	150/2	200/2	200/2	200/2	200/2	200/2	200/2	200/2
250/2	250/2	250/2	250/2	250/2	200/2	200/2	250/2	250/2	250/2	250/2	250/2	250/2	250/2
300/2	300/2	300/2	300/2	300/2	250/2	250/2	300/2	300/2	300/2	300/2	300/2	300/2	300/2
350/2	350/3	350/3	350/3	350/3	300/3	300/3	350/3	350/3	350/3	350/3	350/3	350/3	350/3
450/3	400/3	400/3	400/3	400/3	350/3	350/3	400/3	400/3	400/3	400/3	400/3	400/3	400/3
650/3	550/3	550/3	550/3	550/3	450/3	450/3	550/3	550/3	550/3	550/3	550/3	550/3	550/3
970/4	820/4	800/4	800/4	800/4	550/4	550/4	820/4	800/4	800/4	820/4	800/4	800/4	800/4
	1070/5	1050/5	1050/5	1050/5	850/5	850/5	1070/5	1050/5	1050/5	1070/5	1050/5	1050/5	1050/5
	3070/13	3050/13	3050/13	3050/13	1050/6	1050/6	3070/13	3050/13	3050/13	3070/13	3050/13	3050/13	3050/13
	6070/25	6050/25	6050/25	6050/25	3050/16	3050/16	6070/25	6050/25	6050/25	6070/25	6050/25	6050/25	6050/25
					6050/31	6050/31							
130 ≤ Ss ≤ 400		100 ≤ S	s ≤ 250		50 ≤ S	s ≤ 200	100 ≤ Ss ≤ 250						
Ss = Anch	nor spacing												

Standard short length channels

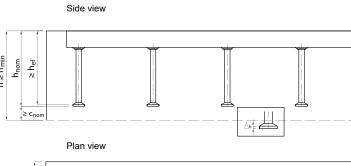
Short lenght channels are available from 100 mm to 950 mm with stud quantities and spacings according to the table above.

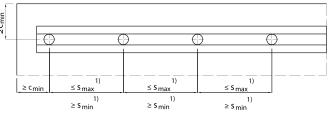

Standard long length channels

Long length channels are supplied in 1050, 3030 and 6070 mm lengths with varying stud spacings according to section type of the channel.

Types of round anchors studs

Туре	Anchor	Shaft d1	Head d2	min hef
	28/15	6	12	45
	38/17	8	16	76
	40/25	8	16	79
Round Studs	49/30	10	20	94
s pu	54/33	12	24	155
Rou	72/49	16	32	179
	40/22	8	16	76
	50/30	10	20	94
	52/34	12	24	156
S	40/22P	10	20	91
PR Stud	50/30P	12	24	106
HMPR Round Studs	52/34P	14	14 28	
Rc	40/26P	10	20	94

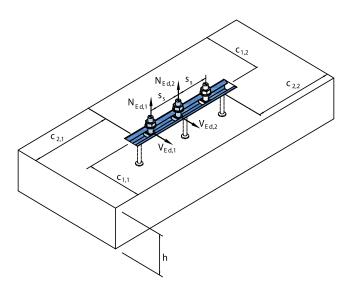



HMPR-CE Anchor Spacings & Minimum Edge Distances

Anchor stud spacings

In order to meet the resistance loads, anchor stud spacings should be postitioned according to the tables below.

	nchor		chor cing	End Spacing (x)	Min Channel Length (mm I)	
	hannel	smin	smax	round anchor	round anchor	N h _{min} N hom ≥ h _{ef}
				(mm)		
	28/15	50	200	25	100	≥ C _{nom}
	38/17	50	200	25	100	
	40/25	100	250	25	150	Plan viev
~	40/22	100	250	25	150	_
HMPR	49/30	100	250	25	150	r C min
Ī	50/30	100	250	35	170	
	54/33	100	250	35	170	
	52/34	100	250	35	170	
	72/49	130	400	35	200	_≥ c _{min}
	40/22P	100	250	25	150	
HMPR	50/30P	100	250	35	170	
≥ I	52/34P	100	250	35	170	
	40/26P	100	250	25	150	



Minimum edge distances

Depending on the type of the channels, anchors studs must be positoned at a minimum distance from the component edges.

The minimum spacings of the T head bolts must be adhered to according to the table below.

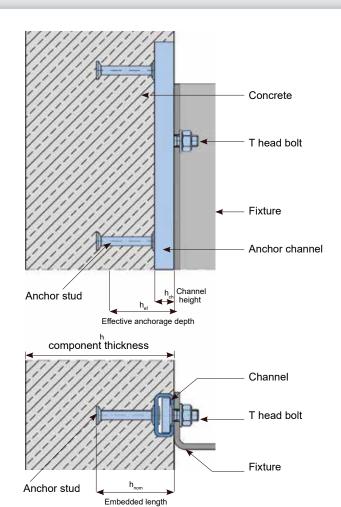
									40/22	P & 4	0/26P	50/30P			50/30P					
Anchor Channel			28/15			38/17			40/25 & 40/22			49/30 & 50/30			54/33 & 52/34			72/49		
Special screws	М		8	10	12	10	12	16	10	12	16	12	16	20	12	16	20	20	24	30
Min. spacing of screws	Ss _{,min}	_	40	50	60	50	60	80	50	60	80	60	80	100	60	80	100	100	120	150
Min. anchorage dept	min hef	[mm]		45			76			79			94			155			179	
Min. edge distance	C _{min}			40		50			50			75				100			150	
Min. member thickness	hmin				hef + Dh + Cnom															

Installation Details & Section Views

Installation of the anchor channels

The fitness for use of the anchor channel can be guaranteed according to the following installation conditions:

 The installation of the anchor channels must be made with qualified workers


• Installation must be made with the manufacturers specifications and drawings

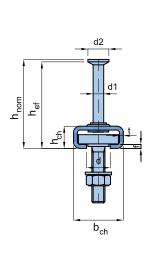
• Fixing on the form work must be done in a way that no movement of the channels will occur during laying of the reinforcement bars and pouring and compacting of the concrete

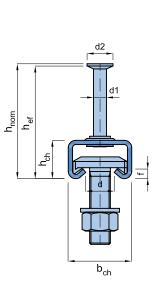
• The concrete under the head of the anchor channels must be properly compacted

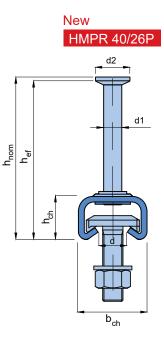
• Size and positioning of the T head bolts must correspond to the specificatiosn and drawings

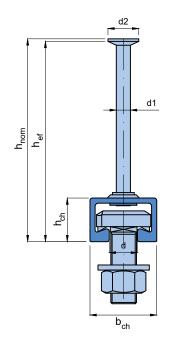
• Setting torques of the T head bolts must not be exceeded

Typical Section Views

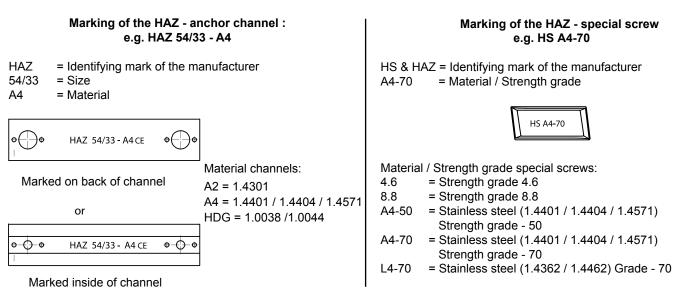

Legend:


h _{ch}	channel	height
-----------------	---------	--------


b_{ch} Width of channel


h_{ef} anchorage depth

h_{nom} Embedment depth

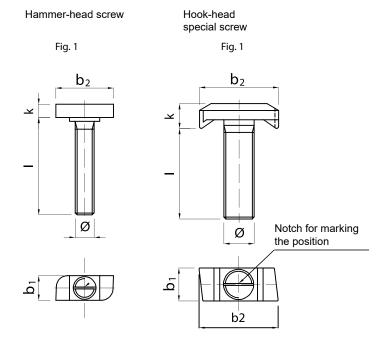


HMPR-CE Anchor Channels - Product Range

Marking

Material Types

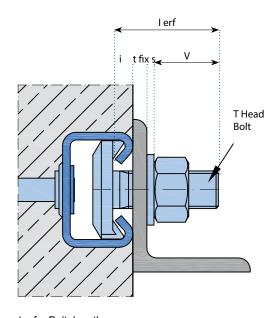
	Dry conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure
Specification	Material types required for use in structures subject to dry internal conditions with the exception of usual humidity (e.g. accomodations, offices, schools, hospitals etc.)	Material types required for use in structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings)	Material types required for use in structures subject to external atmospheric exposure (including industrial and marine environment) or in permanently damp internal conditions.	Material types required for use in structures subject to exposure in particular aggressive conditions (e.g immersion of sea water, chloride atmosphere) or atmosphere with chemical polution (e.g. in desulphurization plants)
Channel material grade	Steel 1.0038;1.0044 EN 10025 hot-dip-galv ≥ 50 um	Steel 1.0038;1.0044 EN 10025 hot-dip-galv ≥ 50 um	Stainless steel 1.4401/1.4404/1.4571 1.4362, EN 10088	Stainless steel 1.4462/1.4529/1.4547 EN 10088
Anchor material grade	Steel 1.0038;1.0214,1.0401 1.1132,1.5525 EN 10263 hot-dip-galv ≥ 50 um	Steel 1.0038;1.0214,1.0401 1.1132,1.5525 EN 10263 hot-dip-galv ≥ 50 um	Stainless steel 1.4401/1.4404/1.4571 1.4362, EN 10088	Stainless steel 1.4462/1.4529/1.4547 EN 10088
T head bolt material grade	Steel strength grade 8.8/4.6 EN ISO 898-1 e-galv ≥ 5 um	Steel strength grade 8.8/4.6 EN ISO 898-1 hot-dip-galv ≥ 50 um	Stainless steel 1.4401/1.4404/1.4571 1.4362, EN 3506-1	Stainless steel 1.4462/1.4529/1.4547 EN 3506-1
Washer material grade	Steel EN 10025 e-galv ≥ 5 um	Steel EN 10025 hot-dip-galv ≥ 50 um	Stainless steel 1.4401/1.4404/1.4571 EN 10088	Stainless steel 1.4462/1.4529/1.4547 EN 10088
Nut material grade	Steel strength grade 8.8 EN 20898-2 e-galv ≥ 5 um	Steel strength grade 8.8 EN 20898-2 hot-dip-galv ≥ 50 um	Stainless steel 1.4401/1.4404/1.4571 EN ISO 3506-2	Stainless steel 1.4462/1.4529/1.4547 EN ISO 3506-2


3) Electroplated acc. to EN ISO 4042

4) Hot-dip galvanized on the basis of EN ISO 1461, and coating thickness \geq 50 µm

HMPR-CE Anchor Channels - Product Range

Dimensions of the HAZ METAL Special Screws & Strength Grade



Dimensions of the HAZ METAL Special Screws:

			Dimer	nsions		Length		
Anchor Channel	Fig.	b1	b2	k	Ø	I		
			[m	m]		[mm]		
28/15	1	10	23	4	8	15-200		
20/15	1	10	23	5	10	20-300		
	1	13	31	6	8	20-300		
38/17	1	13	31	6	10	20-300		
30/17	1	13	31	7	12	20-300		
	1	13	31	7	16	20-300		
40/22P	2	14	35	7,5	10	20-300		
40/25	2	14	35	7,5	12	20-300		
40/26P	2	14	34	8,5	16	20-300		
49/30	2	13	43,3	10	10	20-300		
50/30P	2	13	43,3	10	12	20-300		
52/34P 54/33	2	17	43,3	11	16	20-300		
54/55	2	21	43,3	12	20	30-300		
	2	23	58	14	20	50-300		
72/49	2	25	58	16	24	50-300		
	2	31	58	20	30	50-300		

Special Screws	Stee	_{el} 1)	Stainles	s Steel ¹⁾
Strength grade	4.6	8.8	A4-50	A4-70
f _{uk} [N/mm ²]	400	800	500	700
f _{yk} [N/mm ²]	240	640	210	450
Finish	z.p.,	h.d.g		

1) Materials according to Annex 3, Table 1

l erf = Bolt length i = channel lip thickness

t fix = Fixture thickness

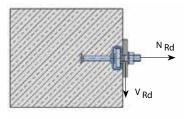
s = washer thickness

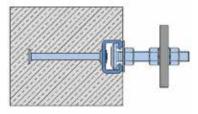
V = minimum thread length

• The length of the T bolt must be determined using the formula (L erf =tfix + i + s + v)

Dimensions V_{min}

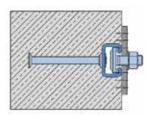
T head bolt Metric size	V _{min} (mm)
M8	12.5
M10	14.5
M12	17.0
M16	20.5
M20	26.0
M24	29.0
M30	33.5

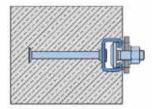

Dimensions of channel lip i


Anchor Channel	i (mm)
28/15	2.25
38/17	3.00
40/25	5.60
49/30	7.39
54/33	7.90
72/49	9.90

T head Bolt Load Properties

Γ

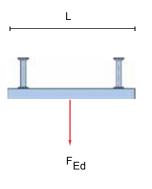

T head bolts characteristic load values



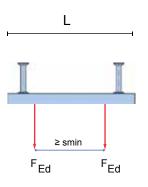
T Hea	ad Bolt	M8	M10	M12	M16	M20	M24	M30
	ture hole (mm)	9	12	14	18	22	26	33
	N _{Rd}	7.3	11.6	16.9	31.4	49.0	70.6	112.2
4.6	V _{Rd}	4.3	6.9	12.1	22.6	34.7	50.7	80.6
	M Rd	9.0	17.9	31.4	79.8	155.4	268.9	538.7
	N _{Rd}	19.5	30.9	44.9	76.0	122.0	165.6	242.5
8.8	V _{Rd}	11.7	18.6	27.0	50.2	78.4	99.2	145.6
	M _{Rd}	24.0	47.8	84.0	213.0	415.4	718.4	1439.2
	N _{Rd}	6.4	10.1	14.8	27.4	42.8	61.7	98.1
A4-50	V _{Rd}	3.8	6.1	10.6	19.8	30.9	44.5	70.7
	M Rd	7.9	15.7	27.5	70.0	136.3	235.8	472.5
	N Rd	13.7	21.7	31.3	58.8	82.4	132.1	210.0
A4-70	V _{Rd}	8.2	13.0	18.9	35.2	49.2	95.1	151.0
	M Rd	16.8	33.5	58.8	149.4	291.3	503.7	1009.2

Minimum spacing and setting torque of T head bolts

General: The fixture is braced to the concrete and channel respectively. The stated torque values must not be exceeded.


Steel to steel: The fixture is braced to channel with use of a suitable washer. The stated torque values must not be exceeded.

Cast-in	T Head	T bolt spacing	S	etting Torque T _{in}	st
Channel	Bolt Diameter	S _{s,min}	General	Steel-steel contact 8.8	Steel-steel contact A4-70
	M8	40	8	20	20
28/15	M10	50	13	40	40
	M12	60	15	50	50
	M10	50	15	40	40
38/17	M12	60	25	70	70
	M16	80	45	100	120
40/000	M10	50	15	40	40
40/22P 40/25 40/26P	M12	60	25	70	70
40/20P	M16	80	45	150	150
	M12	60	25	70	50
49/30 50/30P	M16	80	60	180	180
	M20	100	75	90	190
	M12	60	25	70	50
52/34P 54/33	M16	80	60	180	180
	M20	100	120	120	320
	M20	100	120	360	-
72/49	M24	120	200	360	-
	M30	150	380	400	-



HMPR-CE Anchor Channels Load Tables & Calculation Examples

Single Loading

Pair Loading

Load arrangement

Resultant Desgined Load F_{Ed}

a

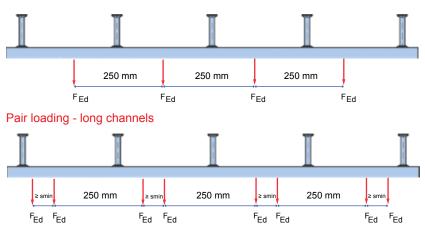
a

_		Minimum edge distance ar (mm)	n n ss h				nce Load F Ioad / Sing			
Channel Type	T Head bolt	Minimum edge dist ar (mm)	Component minimum thickness h (mm)		Char	nnel length	L (mm) / n	o of ancho	r studs	
Ч, с,	H H Pol	Min edç ar (Comp minim thickn (mm)	150 (2)	200 (2)	250 (2)	300 (2)	350 (2)	350 (3)	1050
28/15	M8,10,12	65	100	6.5	6.9	6	-	-	6.9	5.6
38/17	M12,16	100	130	10.5	10.5	10.3	-	-	10.5	8.3
40/25 40/22	M16	130	150	12.2	12.2	12.2	12.2	-	12.2	7.4
49/30 50/30	M16,20	195	180	17.2	17.2	17.2	17.2	-	17.2	9.3
54/33 52/34	M20	260	250	39.5	40.8	41.1	41.3	-	39.8	13.9
72/49	M24,30	325	300	-	44.8	44.9	44.9	44.9	-	17

Concrete grade 30/37

_		Minimum edge distance ar (mm)	nent s h			ance Load FRo ant loads / Pair		
Channel Type	T Head bolt	Minimum edge dist ar (mm)	Component minimum thickness h (mm)		Channel leng	th L (mm) / no	of anchor studs	3
Ч ^т СР	Polt bolt	Min edg ar (Comp minim thickn (mm)	200 (2)	250 (2)	300 (2)	350 (2)	350 (3)
28/15	M8,10,12	65	100	4	-	4.3	-	4.3
38/17	M12,16	100	130	6.6	-	6.8	-	7.2
40/25 40/22	M16	130	150	8.6	8.8	-	-	9.2
49/30 50/30	M16,20	195	180	13	13.4	-	-	13.7
54/33 52/34	M20	260	250	20.9	21.3	-	-	21.5
72/49	M24,30	325	300	27.2	27.7	-	28.1	-
	Minimun	n t bolt spacing	s min (mm)	100	125	125	150	150

Concrete grade 30/37


NEd

 F_{Ed}

 V_{Ed}

 N_{Ed} = Design value of an action tensile load V_{Ed} = Design value of an action shear load F_{Ed} = Design value of an action resultant load

Single loading - long channels

Calculation examples

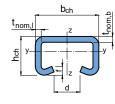
 $F_{Ed} = \sqrt{N_{Ed}^{2} + V_{Ed}^{2}}$

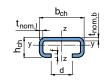
Example 1:

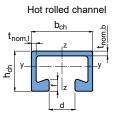
 $\begin{array}{lll} \mbox{Tension} & N_{Ed} = 5,0 \mbox{ kN} \\ \mbox{Shear} & V_{Ed} = 4,0 \mbox{ kN} \\ \mbox{Resultant} & F_{Ed} = \sqrt{5,0^2 + 4,0^2} = 6,4 \mbox{ kN} \end{array}$

Example 2:

Chosen → HMPR-38/17-200: F_{Rd} 10,5 kN

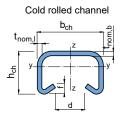

Example 3:


Chosen → HMPR-49/30-200: F_{Rd} 15,0 kN


HMPR-CE Anchor Channels Technical Summary

							Co	ld R	ollee	d Chanı	els								Hot I	Roll	ed C	han	nels								
Profiles		HMP 72/4			1PR- 54/3			IPR- 19/30		HMPR 40/2			IPR-CE 88/17		/IPR- 28/1			MPR 52/34			MPR 50/30		HMI 40	PR- /22							
Section View					54	33		49													50										
Material	Aź	2/A4/HDG A2/A4/HDG			IDG	A2/	A4/⊢	IDG	A2/A4/	HDG	A2//	44/HDG	A2/	′A4/⊦	IDG		HDG	;		HDG	6	н	DG								
Bolt Type		HS	IS HS/HAZ			٩Z	H	S/HA	z	HS/H	AZ	н	HS/HAZ HS/HAZ		н	S/HA	۰z	H	S/H/	٨Z	HS/H		z								
Bolt		72			50			50		40			38		28			50		50			40								
М	20	24	30	12	16	20	12	16	20	10 12	16	10	12 16	8	10	12	12	16	20	12	16	20	10 1	2	16						
S _{slb} [mm]	10	0 120	15	0 60	80	100	60	80	100	50 60	80	50	60 80	40	40 50 60		60	80	100	60	80	100	50 6	0	80						
					De	sign	Res	ista	nce	Capacit	ies o	f Pro	ofiles (D	esig	n Val	ues)														
N _{Rd,s,l} = N _{Rd,s,c} [kN] Steel / Stainless ste	4	5/5	50.5	41.7	7 / 3	36.6	17.	.2 /	25	12.5 / 15		10.8	5 / 12.2	7.	2 / 8	3.3	29	.77	/ -	17	.67	/ -	12.6	1 /	' -						
V _{Rd,s,l} [kN] Steel / Stainless ste		5 / 5	50.5	41.7	7 / 3	36.6	17.	.2 /	25	12.5 /	15	10.5	10.5 / 12.2		7.2 / 8.3		30.6 / -		' -	17.67 / -		′ - 12.61 /		' -							
M _{Rd,s,flex} [Nm]	G	986	8		2832	2		1646	;	1179		517.4		303.5	5	2440)	2704		ļ	12	261								
St.S	St.	640	8		2696	6		1600)	911	3	į	566.1		302.6	6		-			-			-							
	_								Geome	tric \	/alue	s	1			1															
b _{ch} [mm]		72		54				49		40		38				28		28		52		52		50		40					
h _{ch} [mm]		49			33			30		25			17		15		34				30		2	22							
h _{nom} [mm]		182	2		157			96		81			78		47			158			96		7	'8							
h _{ef} [mm]		179)		155			94		79			76		45		1		156		156		156				94		7	6	
c _{min} [mm]		150)		100			75		50			50		40			100			75		5	50							

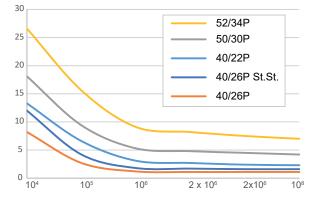
Cold rolled channel



HMPR Power Anchor Channels Technical Summary

Profiles				Hot R	olled Cha	nnels				Cold R	Rolled Cha	annels		
		HMPR 52/34P			HMPR 50/30P			HMPR 40/22P						
Section View			34								25			
Material		HDG			HDG			HDG		A	3			
Bolt Type		HS			HS/HAZ		HS/HAZ							
Bolt		50			50			40						
М	12	16	20	12	16	20	10	12	16	10	16			
S _{sib} [mm]	60	80	100	60	80	100	50	60	80	50	60	80		
		D)esign Re	sistance	Capacitie	s of Profi	les (Desig	n Values)						
N _{Rd,s,l} or N _{Rd,s,c} [kN] Steel / Stainless steel	2	28.66 / -		:	22.33 / -			13.22 / -		12.66 / 14.77				
V _{Rd,s,c} or V _{Rd,s,I} [kN] Steel / Stainless steel	2	28.66 / -		:	22.33 / -	-		13.22 / -		12.	.77 / 15	.00		
HDG		2440			2704			1261			2440			
M _{Rd,s,flex} [Nm] St.St.		-			-			-			911			
	Geometric Values													
b _{ch} [mm]	52		52 50		40			40						
h _{ch} [mm]		34			30		22			25				
h _{nom} [mm]		158			108			93			96			
h _{ef} [mm]	155.5				106			91.2			94.2			
c _{min} [mm]		100			75			50			50			

Hot rolled channel



HMPR-P Anchor Channels Dynamic Loads

Fatigue resistance at lower limit of amplitude = 0

The fatigue resistance for loads with a load range where the lower limits of amplitude are equel to zero can be read directly from the S-N curve according to ETA-09/0338 for any number of load cycles.

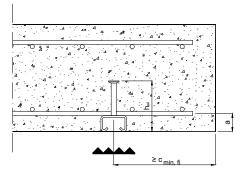
Fatigue resistance $\Delta N_{Rd,0}$ [kN]

Fatigue resistance $\Delta N_{Rd,0}$ [kN]

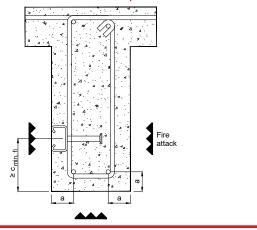
		Numb	per of Load C	ycles	
Profile	40/22P	40/26P	50/30P	52/34P	40/26P St.St.
≤ 10⁴	13.3	8.2	18.1	26.6	12
≤ 10 ⁵	6.6	2.7	9.4	15.6	4.2
≤ 10 ⁶	3.1	1.2	5.3	9.1	1.8
≤ 2 x 10 ⁶	2.7	1.1	4.8	8.2	1.7
≤ 2 x 10 ⁶	2.4	1.1	4.5	7.5	1.6
≤ 10 ⁸	2.3	1.1	4.2	7.0	1.6

Combination of anchor channels and T-bolts for cyclic tensile stress

Profile	T-Bolts					
40/26P	M12	8.8, A4				
40/22P	M12	8.8				
50/30P	M16	8.8				
52/34P	M16	8.8				


FIRE EXPOSURE

Characteristic resistance under tension and shear load under fire exposure


Anchor Channel			28/15	38/17	40/25 40/22 40/22P 40/26P	49/30 50/30 50/30P 54/33 52/34 52/34P	72/49			
Channel Bolts ≥ [mm]				M12	M16	M16	M16	M16		
Steel failure: Anchor, con	nnection cha	innel/anchor, lo	ocal flexure	of channel lips						
	R30			0.9	1.8	1.8	5.7	5.7		
	R60	N _{Rk,s,fi}	[IzNI]	0.7	1.5	1.5	4.2	4.2		
	R90	= V _{Rk,s,fi}	[kN]	0.5	1.2	1.2	2.6	2.6		
	R120	Rk,s,fi		0.4	1.1	1.1	1.8	1.8		
Partial safety factor $Y_{\text{Rk,s,fi}}^{(1)}$		[-]		1.0						

1) In absence of other national regulations

One sided fire exposure

Multi-sided fire exposure

HMPR-CE Dimensioning Principles

Required information for channel selection

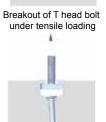
The information below are required to conduct a full analysis in order to dimension and select the most secure and suitable anchor channel for the fixing application:

- Anchor channel type & Type of raw material
- · Anchor channel lenght with munber of studs and stud spacing distances
- · Positioning of the cast in channel in the concrete component with exact edge distances of the channel on all directions
- · Thickness of the concrete component and the strenght class of the concrete
- · Allocation & layout of reinforcement bars within in the concrete component
- Type and size of t head bolts and their numbers
- · Fixture application dimensions & type of fixing whether top of slap or edge of slab
- Tensile and shear loadings on the fixture

Verification areas when selecting an anchor channel

The assessmet of the suitable anchor channel dimensions for the intended use with regards to the requirements of the mechanical resistance, stability the safety of the application is done by checking the following areas.

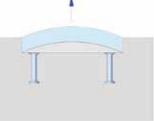
Verifications under tension loads	Verifications under tension loads							
1. Distribution of acting tension loads								
2. Steel failure - anchor stud	N _{Rk,s,a}							
3. Steel failure - t head bolt	N _{Rk,s,s}							
4. Steel failure - connection between channel & anchor stud	N _{Rk,s,c}							
5. Steel failure - local flexure of channel lips	N _{Rk,s,l}							
6. Steel failure - flexure resistance of channel	$M_{Rk,s,flex}$							
7. Steel failure - trasnfer of setting torque into prestressing force	T _{inst}							
8. Concrete failure - pullout	N _{Rk,p}							
9. Concrete failure - concrete cone	N _{Rk,c}							
10. Concrete failure - splitting due to installation	$C_{_{\min}},S_{_{\min}},h_{_{\min}}$							
11. Concrete failure - splitting due to loading	N _{Rk,sp}							
12. Concrete failure - blow out	N _{Rk,cb}							
13. Reinforcement	$N_{Rk,re}$, $N_{Rd,a}$							
14. Displacement under tension loads	σ _N							


Verifications under tension loads							
1. Distribution of acting shear loads							
2. Steel failure without lever arm - T head bolt	V _{Rk,s,s}						
3. Steel failure without lever arm - flexure channel lips	V _{Rk,s,I}						
4. Steel failure with lever arm	M ⁰ _{RK,s}						
5. Concrete failure - pry out	VRk,cp						
6. Concrete failure - concrete edge	V _{Rk,c}						
7. Reinforcement	V _{Rk,c,re}						
8. Displacement under shear loads	σ						

Methods of Verification Against Failures

Anchor channel verification against steel breakout

- · Correct channel selection by comparing allowable loads and applied loads
- · Determination of the anchor loads from tensile loads and shear forces according to the load influence model verification of the connection between anchor and channel
- · Arrangement of the bolts along the channels length



1

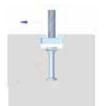
Breakout of channel stud under tensile loading

Breakout due to flexure of channel under tensile loading

Breakout of T head bolt under shear loading

Breakout of channel lips under shear loading

Concrete verification against failures


- Thickness of the concrete component
- · Strength class of the concrete
- · Condition of the concrete, cracked or non cracked as a special case to be verified
- · Verification against concrete edge distance and channels spacings



under tensile loading

Failure of concrete edge under shear loading

Pull out of channel from concrete under tensile loading

Failure of concrete pry out

under shear loading

Blow out of concrete under tensile & shear loading

Quality Assurance Control

HAZ Metal readily embraces the responsibility of the business that it is in. The company has established a well planned quality management system and has been awarded the ISO 9001:2008 quality management certificate.

This system is a part of HAZ Metal's operations and there are no exceptions or compromises in jeopardising the level of quality of the products under production. The QAC department is staffed with knowledgeable and experienced engineers who are trained in the field and form the backbone of this operation.

The factory is equipped with testing machines which are used to conduct chemical and physical tests on all items that enter and exit the warehouse. The production is strictly controlled with periodic in house testing of both raw materials and finished products. This procedure is a part of day to day operations in order to maintain the performance of HAZ products and to fulfil the safety requirements for use in the construction industry.

1.)

150 kN standing tensile load testing machine. Mechanical testing for manufactured products are carried out using this machine

2.)

Mechanical testing laboratory with computer aided operations to prepare internal reports and record test results

3.)

Spectrometer is used for conducting chemical composition analysis for the raw materials and the end product components that are sourced outside production

4.)

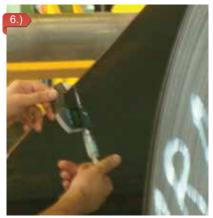
100 kN mobile anchor tensile load testing machine. Testing for performance of products on substrates are carried out using this machine

5.)

Galvanized coating micro thicknesses are checked using electronic gauges to ensure that corrosion protection is in place for steel products

6.)

Material thicknesses are checked using digital micrometers to ensure that the products are produced according to tolerance thicknesses



Quality Assurance Control

Testing procedures have been formulated and are implemented to make sure that the production of anchor channels meet the required standards.

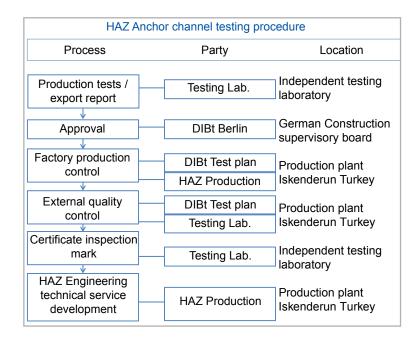
Production

HAZ Metal produces anchor channels since 2001. Modern production lines, innovative tools, and a high production volume guarantee high quality and a reliable delivery terms.

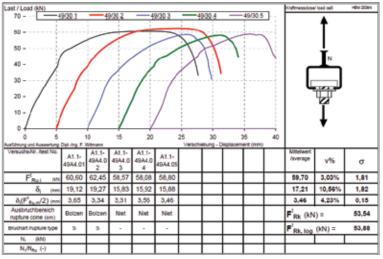
Quality assurance

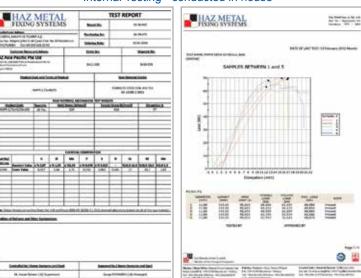
The quality assurance system developed by HAZ Metal forms the basis for all interests in the production that is certificated by safety standards authority German Institute TUV SUD for standardization EN ISO 9001:2008.

Own department, consisting of specially qualified engineers, supervises every working step - in the production, as well as in the service area around the ISO 9001:2008 and the strict application of the totally quality plan that is put through by HAZ management.


Factory-owned production control

As a component of the mentioned measures to the quality assurance system, a factory-owned test lab provides for the constant quality checks of the anchor channels. The ready products, as well as the raw materials are tested by a constant and uncompromising control system.

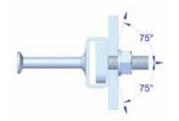

The factory-owned production control is directed with the strict guidelines for the protection of the quality after the test plan of the DIBT which is an obliging component of the universal appraisal licensing.


Foreign supervision

An independent and authorized testing laboratory is appointed for the supervision of the production according to the licensing and the matching test plan of the DIBT. The anchor channels are marked after the certification of the independent testing institute which has awarded HAZ with the compliance mark (Ü sign).

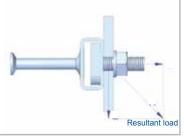
External Testing - conducted by independent test laboratory

Internal Testing - conducted in house



HMPR Anchor Channels - Installation Information

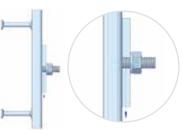
Load Direction



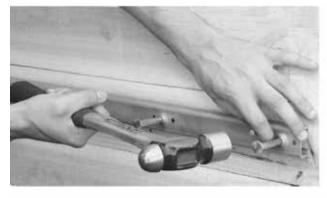
The loading acts within 150 degrees area towards the face of the channel. Any load acting withing this area should be checked with the allowable tensile loads for each channel to choose the appropriate channel.

Resultant loading

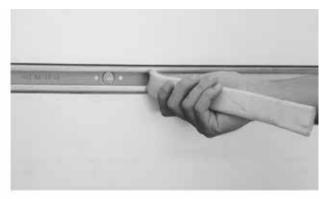
The resultant loading is a combination of both tensile and shear loads. Correct calculation must be made in order to determine the acting load and choose the appropriate channel


Shear loading

The loading acts within 15 degree angle towards the lower or upper face of the channel. Any load acting within this area should be checked with the allowable shear loads for each channel to choose the appropriate channel



Longitudinal loading

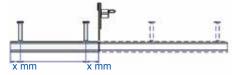

The loading acts along the length of the channel. Each channel has a limited longitudinal load capacity. For strong longitudinal loading a toothed channel must be used

Installation Instruction


1.) Anchor channels are fixed to form work after careful planning and positioning. Concrete is then cast in to the form work.

2.) After the concrete is cured, the filler inside the channel, set for the purpose of preventing concrete filling the channel's slot, is removed as shown.

3.) Connections to the cast in channels are made with T bolts and lock nuts. T bolts are inserted in to the channels horizontally and then turned right through 90 degrees. This locks them vertically in the channel.

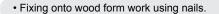

4.) Fixtures are fastened with the T bolts and nuts as shown above. Correct loading and torque values need to be applied in accordance with the allowable loads of the channels and bolts.

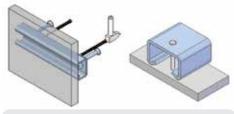
x mm and required stud spacing

HMPR Anchor Channels - Installation Information

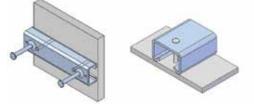
Length Cutting At Construction Site

Standard long lengths can be cut to size on construction sites according to the desired length. Care should be taken in making sure that the minimum distance of 25 mm between the studs and channel end should be met.

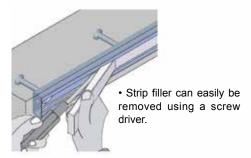



· An end anchor is available to be fixed at the end of the cut channel to avoid wastage.

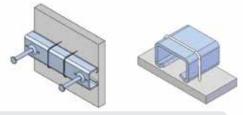
· Long lengths can be cut to size providing the X size is no less than 25 mm.


Attachment To Form Work

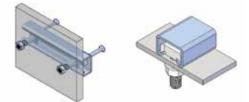
It is important to firmly attach the anchor channels on to form work. There are a few ways to execute this important procedure which is made onto wood and steel form work.



• Fixing onto steel form work using pop rivets.

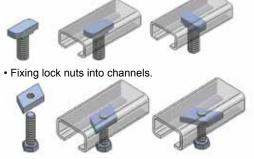

Removing The Strip Filler

Anchor channels are supplied with strip fillers within the open slot of the channels to prevent concrete ingress. This strip filler is removed as shown after the concrete is cured.



· Fixing onto wood form work using staples.

Requested length


· Fixing onto steel form work using T bolts.

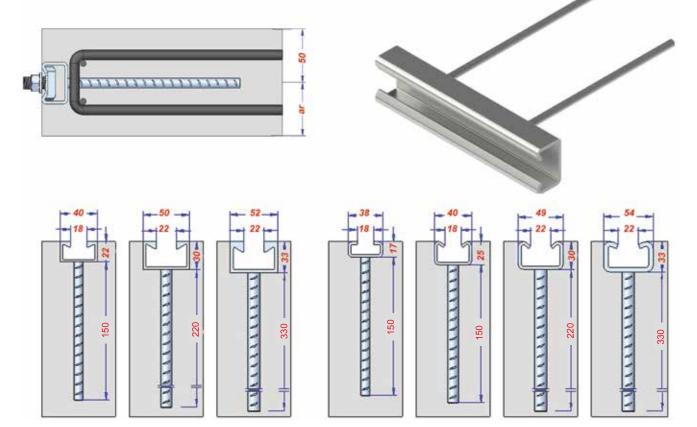
Connections To Channels

Fixtures are attached on to the anchor channels with T head bolts and lock nuts. There are suitable types for each Anchor channel section.

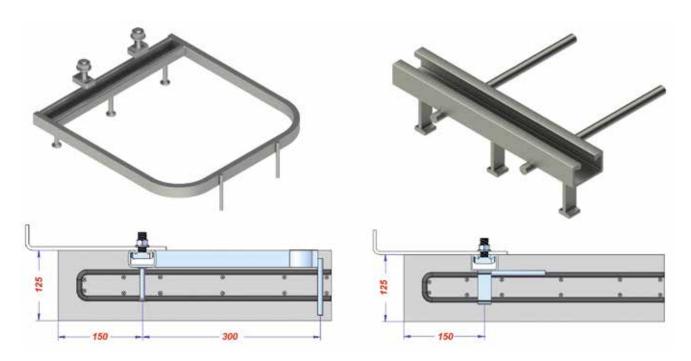
· Fixing T bolts into channels.

Adjustability

T bolts are suitable to be inserted at the desired point along the length of the channel. Fixing is done by turning the T bolt 90 degrees clockwise and by tightening the nut. The correct torque values must be applied when tightening the nuts. T bolts must not be located beyond the last stud which is 25 mm from the end of the channel.

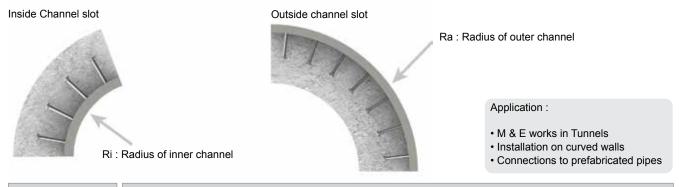

• Suitable T bolts can be inserted at desired point • To ensure correct installation of the T bolt the • T bolts must not be positioned and adjusted easily along the length of the channel. notch at the end of the shank must be checked. beyond the last stud on the channel.

HMPR-SP Special Types of Anchor Channels


Anchor Channels With Reinforcement Studs

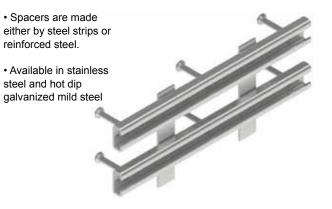
Anchors can be manufactured out of reinforcement studs for special applications, particularly fixings in the edge of thin slabs. These channels have higher pull out loads and combined loads. Due to these qualities these channels are preferred for use in the fixing of curtain walls on to reinforced concrete beams.

Channels With Special Fabricated Elements


Special anchor channel manufacturing can be made according to the requirements of the project. Local testing as well as in house testing can me made to safe check the load capacities of the special anchor channels.

HMPR-SP Special Types of Anchor Channels

Curved Anchor Channels


Channels can be easily curved to an internal or external radius (lips inward or lips outward). Curves on elevation, such as brick arch details, which require special care, can be accommodated with these types of channels.

Min. Radius	Channel Types									
	28/15	38/17	41/22	40/25	40/22	49/30	50/30	54/33	52/34	
Inner channel - Ri	0.5 m	0.5 m	1.5 m	1 m	0.7 m	0.8 m	0.8 m	4 m	0.8 m	
Outer channel - Ra	1.0 m	1.5 m	4 m	3 m	2 m	8 m	4 m	0.8 m	4 m	

Channel Pair - Special Fabricated Unit

Where double or multiple fixings are required at known centres, channels can be welded to spacer straps, as shown below. The straps keep the channels parallel and accurately spaced along their length.

Corner Fabricated Unit

Channels can be easily fabricated to suit corners, see below. (Smaller channels may be folded; larger channels are welded.)

• Standard leg dimensions are 125 mm by 250 mm. Other sizes can be produced upon request.

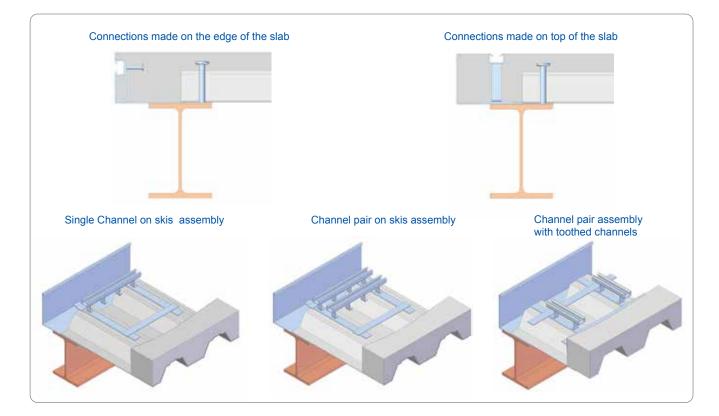
 Available in stainless steel and hot dip galvanized mild steel.

Channels With Wing Strip

Wing anchors are available for low profile details, e.g. where a channel is located in the concrete casing of a steel beam. The channel load capacity is reduced.

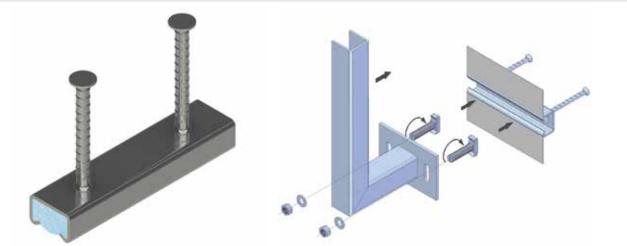
If a narrow beam has a central reinforcement bar, anchors can be made to pass each side of the bar. This might occur where fixings for mechanical services are required in waffle slabs.

HMPR-MD Anchor Channels for Metal Deck Connections


The use of concrete cast on metal decking is being used more commonly in the building industry. Fixing of exterior facades such as curtain-walls, masonry walls, precast panels etc, are often required to be connected close to the edge of the metal deck. The metal deck anchor channels have good performance in thin slabs and in perimeter locations. The special designed assemblies made on the back of the channels provide strong bond with the concrete, when they are located within the reinforcement cage. Loads applied on the channel spreads over a longer area around the length of the slab edge. The workmanship of through deck fixing can be significantly reduced. The channels are easily placed before pouring the concrete, with the channel studs or lugs of any suitable length to clear the ribs in the metal deck. Channels for metal decks are usually produced in hot dip galvanized mild steel. However, stainless steel grade 1.4301 and 1.4401 are also available upon request.

slab. Channels are welded on to lugs that can have height distances to enable quick

Special assembly made for connection on to top of the slab. Assembly on skis with lugs that can be arranged to increase load performance and provide easy positioning on the metal deck

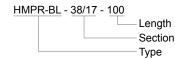


HMPR-BL Anchor Channels for Balustrades

HMPR-BL anchor channels are the cold rolled channels with welded rebars. The HMPR-BL channels are used for fixing balustrades and hand rails on to the front faces of decks and balcony slabs. The rebars with stamped heads guarantee safe loading when fixing on thin slabs. The welded rebars are made our of ST500 build steel with ribs.

Advantages

- Fully adjustable
- Reduces significantly the construction time
- · Permits adjustment and replacement of attached structures
- Can be used even on thin front faces of less than 100 mm
- T Head bolts are used instead of welding or anchor bolts

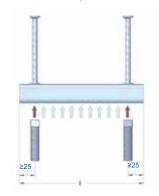


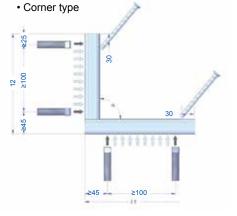
Technical Details

Product Code	L (mm)	Diameter Sd (mm)	SI (mm)	Size	Product Code	La/Lb (mm)	Diameter Sd (mm)	Slud Lerigin SI (mm)	Size			
	100			M12x50 & M16x60					M4050 8			
HMPR-BL-38/17	150	10	201		201	HMPR-BL-38/17	170/170	12	201	M12x50 & M16x60		
	200											
	100			M12x50 &					M12x50&			
HMPR-BL-40/25	150	10	90	M12x50 & M16x60	HMPR-BL-40/25	170/170	14	90	M16x60			
	200											
	100			M12x50 & M16x60	M10VEO 8	MIONEO 8	M12v50.8					M12x50 &
HMPR-BL-49/30	150	12	110		HMPR-BL-49/30	170/170	14	150	M12x50 & M16x60			
	200											
	100			M12x50 &					M12x50 &			
HMPR-BL-54/33	150	14	200	M12x50 & M16x60	HMPR-BL-54/33	170/170	14	250	M12x50 & M16x60			
	200											

· Standard type

Product Code

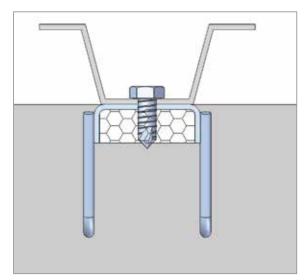



Material:

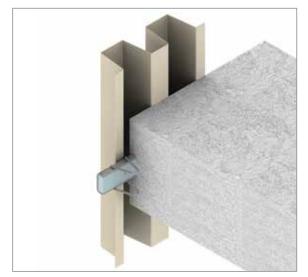
A2: Stainless steel 1.4301,

A4 Stainless steel 1.4401,

HDG hot dip galvanized mild steel 1.0038 (S235JR) (Studs are always out of steel BST 500S)

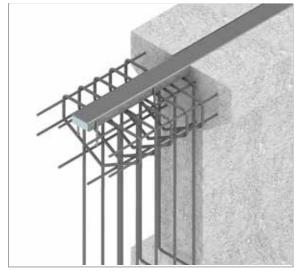

HAZ-TU Anchor Channnels for Profiled Metal Sheeting - Introduction

HAZ-TU Anchor channels for profiled metal sheeting installation on reinforced concrete beams and columns are available in 3 and 6 mm thicknesses and 60/22 sections.


Fixing is done with self drilling screws or shot fired nails. Channels allow fast and economical installation as this system eliminates the difficult and time consuming anchor fixing into concrete.

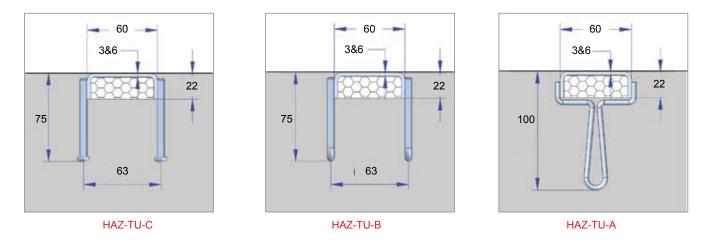
Channels are inserted onto the surface of the concrete component flush to the surface and in the correct alignment. The end joints between channels should be minimum 20 mm. Fixing to the channels is made with either self drilling screws 6.3x22 or shot fired nails 4.5x24.

Channels are available in two standard types in 3 metre length with foam filling. Available materials are stainless steel grade 1.4301 (AISI 304) & 1.4401 (AISI 316) and hot dip galvanized mild steel.



• Fixing metal profiled sheets on to HAZ-TU anchor channels using self tabbing screws

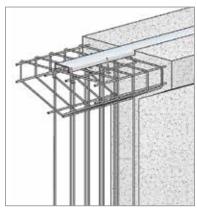
· Cladding material attached at the EDGE of the component

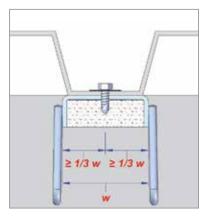


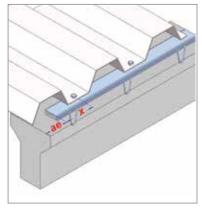
HAZ-TU anchor channels are casted in to concrete components

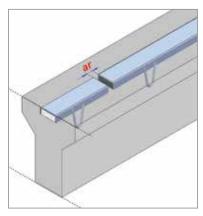
· Cladding material attached at the TOP of the component

HAZ-TU Anchor Channels for Profiled Metal Sheets - Product Details


HAZ-TU Cast in channels for profiles metal sheet installations are supplied in either 3 or 6 mm thicknesses. A foam filler is inserted in the open slot of the channel for preventing inflow of wet concrete during casting. There are studs welded on to the channel for strong connections on to the concrete. There are three different stud versions which offer different results for loads and minimum edge spacings. Channels are supplied in Stainless steel and hot dip galvanized mild steel.


 The installation of profiled metal sheets on to prefabricated concrete components with embedded HPTR channels enables easy and economical fixing.


• Fixing is done with self drilling screws on to the HPTR cast in channels, without the need of pre-drilled holes. Power screw driver with 1500 rpm is required for fixing.

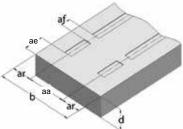

• HPTR channels are cast flush to the surface. The concrete surface should be trowelled smooth enabling the metal sheets to be positioned directly over the channels.

• Drilling positioning should be made in the middle of the channels, leaving a minimum distance 1/3 of the width from the side of the channel.

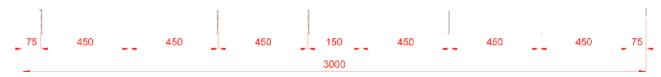
• The minimum edge spacing (ae) should be no less then 20 mm. The distance (x) between the channel end the screw position should be no less than 25 mm.

• The minimum spacing (ar) between channels should be 20 mm.

HAZ TU Anchor Channels - Technical Details


	Technical Details							Tensile - M	lax Design Load Bearing Cap	acity F _{ED} kN
Product Code	Length	Channel Thickness	Section	Execution	No Of Studs	Spacing	Stud Edge Distance	S S F Ld F LdS	Ld F F F F F Ld=S/2	S S F
								Single Loads	Pair Loads	Evenly distibuted load
HAZ-TU 60/22/3-C2	2000		co/00	•	16	450	75	4.6	0.5	15.5
HAZ-TU 60/22/3-C3	3000	3	60/22	A	40	150	10	7.0	2.5	46.6
HAZ-TU 60/22/6-C2	3000	6	60/22	в	16	450	75	7.0	2.5	15.5
HAZ-TU 60/22/6-C3	5000	0	00/22	D	40	150	15	1.0	2.0	46.6
HAZ-TU 60/22/3-B2					16	450		4.6		15.5
HAZ-TU 60/22/3-B3	3000	3	60/22	A	40	150	75	7.0	2.5	46.6
HAZ-TU 60/22/6-B2	3000	6	60/22	в	16	450	75	7.0	2.5	15.5
HAZ-TU 60/22/6-B3	3000	0	00/22	В	40	150	75	7.0	2.5	46.6
HAZ-TU 60/22/3-A2					8	450		4.6		15.5
HAZ-TU 60/22/3-A3	3000	3	60/22	A	20	150	75	7.0	2.5	46.6
HAZ-TU 60/22/6-A2	0000	•	00/00	-	8	450	76	7.0	0.5	15.5
HAZ-TU 60/22/6-A3	3000	6	60/22	В	20	150	75	7.0	2.5	46.6

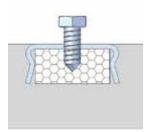
Values are for concrete strength class C20/25


Self drilled screws must be capable to support the indicated loads

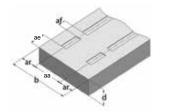
• Set screws should be positioned in the central third of the channels width and no closer than 25 mm to channels end

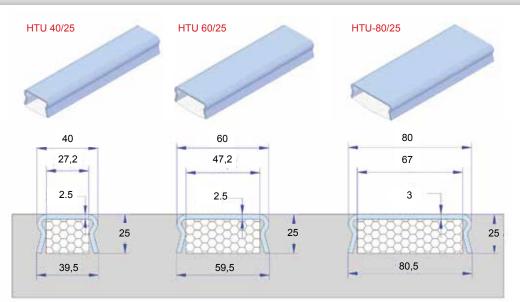
Product Code			Edge Distances (mm)					
HAZ-TU-60/22/3-0	2-3000		а	ar	ae	af	d	b
	Length	Type HAZ-TU C	200	120	20	20	240	68
	Size	Type HAZ-TU B	200	100	20	20	200	75
	Туре	Type HAZ-TU A	200	100	20	20	200	100

Execution 2 : Can be cut into two pieces at the centre. Edge spacing must be minimum 75 mm.



Execution 3 : Can be cut into multiple pieces at the centre of two studs. Minimum edge space must be 75 mm.




HAZ-TU Self Locking Cast-in Channels - Product Details

HAZ TU type cast in channels are self locking channels for connections that are light weight. These channels are ideal for attachments of rails, metal cladding, window & door frames on to concrete substrate. Channels are available in pre-galvanzied steel and hot dip galvanized steel.

	Technical Details										
Product Code	Dimensions			Loadings		Edge Spacings					
	Length (mm)	Thickness (mm)	Section (mm)	Safe load (kN)	Load Spacing (mm)	aa (mm)	ar (mm)	ae (mm)	af(mm)	d (mm)	
HAZ-TU-40/25	3000	2.5	40/25			140	70	20	20	25	
HAZ-TU-60/25	3000	2,5	60/25	1.3	250	160	80	20	20	25	
HAZ-TU-80/25	3000	3.0	80/25			180	90	20	20	25.5	

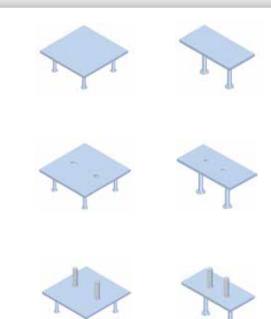
Values are for concrete strength class C20/25

· Self drilled screws must be capable to support the indicated loads

· Load indicated is suitable for tensile, shear and resultant load

HPLS Anchor Plates - Product Details

HPLS Anchor plates is a product that offers solutions for attaching steel components to concrete substrates. anchor plates are cast in to the concrete with a flush surface. Corresponding steel or stainless steel elements are welded to the surface of the anchor plates. These elements are supplied in stainless steel and steel.

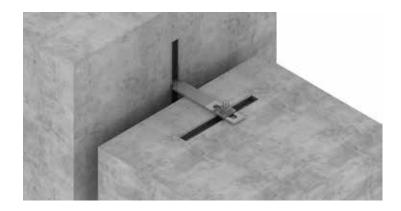

The allowable loads for the anchor plates for tensile, shear and bending moments are verified on project basis according to the required design criteria.

Product Details								
Plate Sizes	Plate Thicknesses	Stud Diameters	Stud Lengths					
		6	50					
70/100,		8	50					
100/140,	4, 6, 8, 10, 12	10	75					
160/160,	10, 12	12	100					
		16	125					

Anchor plates with 4 & 2 studs with flush surface suitable for welding

Anchor plates with 4 & 2 studs with tabbed holes suitable for attachments with screws

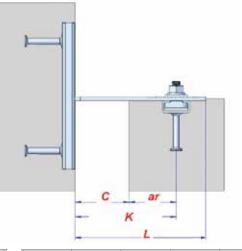
Anchor plates with 4 & 2 studs with welded threaded bars for attachments with hex nuts



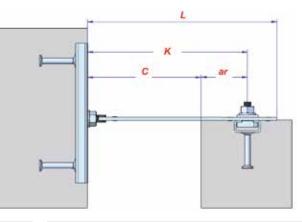
HWT Wall Ties - Introduction & Product Details

The HWT Wall ties provide secure and easy connections between concrete components. Serrated ties and washers enable safe transmittal of tensile loads.

Wall ties are used with cast in channels and T head bolts to achieve three dimensional adjustability for restraining attachments of prefabricated concrete components.


Wall ties are available in stainless steel EN 1.4301 & EN 1.4401 and hot dip galvanized EN 1.0038 grade steel.

HWT - Wall Tie

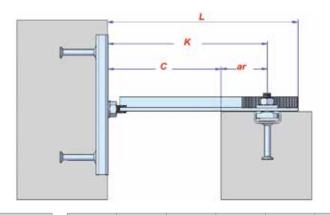

Product Code	Projec- tion -+ 20 (K mm)	Cavity -+ 20 (C mm)	Length (L mm)	Tensile Load all.F (kN)	Edge Distance (ar mm)	Slotted Hole (mm)				
HWT - 28-50	50	0	90							
HWT - 28-75	75	25	115							
HWT - 28-100	100	50	140							
HWT - 28-125	125	75	165	3.5	50	11x55				
HWT - 28-150	150	100	190							
HWT - 28-175	175	125	215							
HWT - 28-200	200	150	240							
•To be used with HMPR-28/15 channels and HTB-28/15-M10x40 T Bolts.										
HWT - 38-75	75	0	115							
HWT - 38-100	100	25	140							

HWT - 38-100	100	25	140			13x55
HWT - 38-125	125	50	165]	75	
HWT - 38-150	150	75	190	7.0		
HWT - 38-175	175	100	215]		
HWT - 38-200	200	125	240			

•To be used with HMPR-38/17 channels and HTB-38/17-M12x50 T Bolts.

HWT Wall Ties - Product Details

HWT-B Wall Tie


Product Code	Projec- tion -+ 20 (K mm)	Cavity -+ 20 (C mm)	Length (L mm)	Tensile Load F (kN)	Edge Distance (ar mm)	Slotted Hole (mm)
HWT-B-28-75	75	25	115			
HWT-B-28-100	100	50	140			
HWT-B-28-125	125	75	165	3.5	50	11x55
HWT-B-28-150	150	100	190			
HWT-B-28-175	175	125	215			
•To be used with HMPR-2	28/15 channe	els and HTE	3-28 M10x	40 T Bolts.		

HWT-B-38-100	100	25	145			
HWT-B-38-125	125	50	165			40 55
HWT-B-38-150	150	75	195	7.0	75	13x55
HWT-B-38-175	175	100	220			

•To be used with HMPR-38/17 channels and HTB-38 M12x50 T Bolts.

HWT-U Wall Tie

Product Code	Projec- tion -+ 20 (K mm)	Cavity -+ 20 (C mm)	Length (L mm)	Tensile Load all. F(kN)	Edge Distance (ar mm)	Slotted Hole (mm)
HWT-U-38-200	200	125	245			
HWT-U-38-225	225	150	270	7.0	75	13X60
HWT-U-38-250	250	175	295	7.0	15	15700
To be used with HMPR-?	88/17 channe	ls and HTF	3-38 M12x	50 T Bolts		

 Tc with HMPR-38/17 channels and HTB-38 M12x50 T Bolts

HWT-U-49-200	200	50	245			
HWT-U-49-225	225	75	270	-		
HWT-U-49-250	250	100	295	12.0	150	17X60
HWT-U-49-275	275	125	320			
HWT-U-49-300	300	150	345			

•To be used with HMPR-49/30 channels and HTB-49 M16x60 T Bolts.

ŀ

HWT-M Wall Ties for Masonry & MAS Brick Tie Channel Introduction

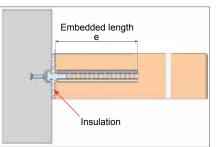
HWT-M Wall ties for masonry are used for the safe and easy connections of masonry blocks to the wall through connections made to cast in channels or surface fixed framing channels.

HWT-M type wall ties are designed for restraint attachments of both masonry wall facades and masonry walls to load bearing concrete walls. The sliding capability of the ties along the length of the channels decreases the risk of the masonry cracking due to structure movements.

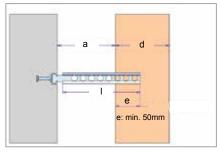

The wall ties are inserted on the channel at desired points and are positioned by turning the ties 90 degrees clockwise. The perforated holes in the wall ties allow mortar filling to improve bonding.

Wall ties for masonry are available in stainless steel 1.4301 (AISI 304) & 1.4401 (AISI 316).

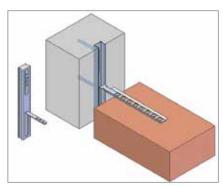
MAS-25/15 Brick tie channels are cold rolled pre-galvanized channels that have punched lugs on the back of the channels. This channel provides the same loading performance as the 28/15 and is an economic option for use in restraining brick walls on to concrete.

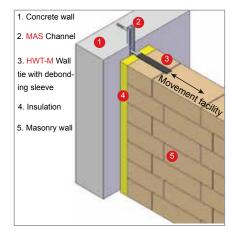

Lugs are punched out every 250 mm and the channels are supplied with a strip filler.

A debonding sleeve is used as a cover for the wall ties. This enables the wall tie to accomodate longitudinal movement in the direction of the tie. This is ideal when installing long masonry walls to concrete walls or when tying in large span infill walls to floor slabs. Debonding sleeves allow room for movement and prevents any cracking of the masonry walls.

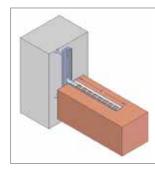


HWT-M Wall Tie


• Wall ties can be used for masonry wall connections fixed to load bearing walls. Embedding length (e) is achieved with the length of the wall tie.


• Wall ties can be used on masonry facade cladding. A minimum embedded length of 50 mm should be applied. The embedded length (e) is determined by correctly setting the length of the wall tie (L) and the masonry block width (d).

MAS-25/15 Brick Tie Channel



• Lugs are prepunched on the back of the channel at 250 mm centres. The lugs are easily bent out on site prior to the casting of concrete.

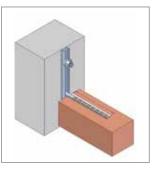
 Wall ties are easily inserted into the debonding sleeves before installation is made.

HWT-M Wall Ties for Masonry - Product Details

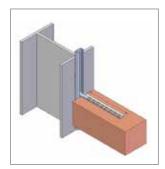
• HWT wall ties can be used with cast in channels type 28/15 and 38/17.

HWT-MS - Wall Tie

HWT-MV - Wall Tie



HWT-ML - Wall Tie



HWT-MT - Wall Tie

Connections on to surface fixed HMP channels type 28/15 and 38/17 can also be made.

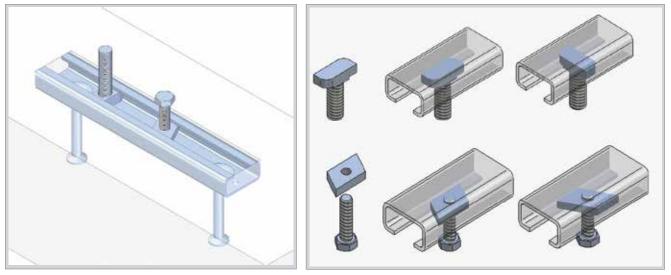
• HMP channels can be welded on to structural steel to allow wall tie connections.

Product Code	Length (mm)	Thick- ness (mm)	Width (mm)	Channel Type	Tensile Load (Kn)	Shear Load (Kn)
HWT-MS 28 -125	125	1.25	25			
HWT-MS 28 -185	185	1.25	25	28/15	2.5	1.4
HWT-MS 28 -245	245	1.25	25			

Product Code	Length (mm)	Thick- ness (mm)	Width (mm)	Channel Type	Tensile Load (kN)	Shear Load (kN)
HWT-MV 28 - 85 HWT-MV 28 -120 HWT-MV 28 -180	85 120 180	2 2 2	26 26 26	28/15	3.2	2.7
HWT-MV 38 - 85 HWT-MV 38 -120 HWT-MV 38 -180	85 120 180	2 2 2	30 30 30	38/17	3.2	2.7

Product Code	Length (mm)	Thick- ness (mm)	Width (mm)	Channel Type	Tensile Load (kN)	Shear Load (kN)
HWT-ML 28 - 85	85	3	25			
HWT-ML 28 -120	120	3	25	28/15	3.2	2.7
HWT-ML 28 -180	180	3	25			
HWT-ML 38 - 85	85	3	30			
HWT-ML 38 - 120	120	3	30	38/17	3.2	2.7
HWT-ML 38 - 180	180	3	30			
	.00	J				

Product Code	Length (mm)	Thick- ness (mm)	Width (mm)	Channel Type	Tensile Load (kN)	Shear Load (kN)
HWT-MT 28 - 85	85	3	25			
HWT-MT 28 -120	120	3	25	18/15	3.2	2.7
HWT-MT 28 -180	180	3	25		0	
HWT-MT 38 - 85	85	3	30			_
HWT-MT 38 -120	120	3	30	38/17	3.2	2.7
HWT-MT 38 -180	180	3	30			



HTB T Bolts & HMLN Lock Nuts - Introduction

HTB T bolts & HMLN lock nuts for attachment in to cast in channels are specially designed for a perfect fit into the section of the channels. Insertion is made and after a 90 degree turn clockwise the fixing is made. Correct torque values must be applied in order to achieve secure connections.

T bolts and lock nuts are available in stainless steel 1.4401 and hot dip galvanised steel strength class 4.6 & 8.8.

Fixing Instructions

1.) After pouring of cement, the concrete wall should be left to dry

5.) Suitable T head bolts should be inserted into place by placing the narrow side of the head in the slot

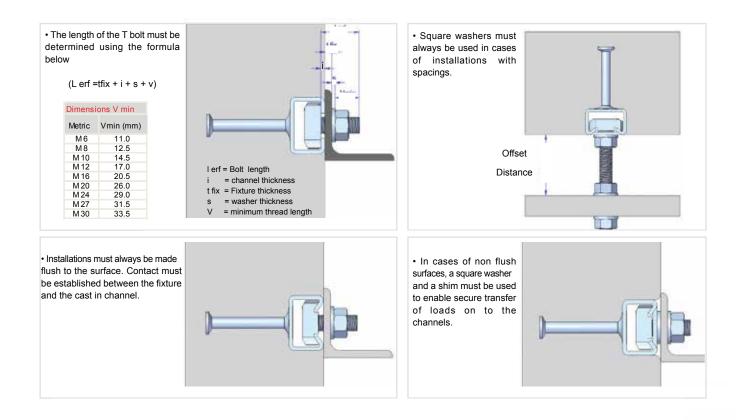
2.) After concrete has dried out, the filler in the channel should be taken out using a suitable tool

6.) Locking in place will be done when turning 90 degrees. Notch on the shank must be set vertically

3.) The filler can be pulled out along the length of the channel simply by hand

7.) T head bolts can be adjusted along the length of the channel to be in the desired position

4.) No filler or concrete left overs should be left within the channel slot. Any residue should be scrapped out



8.) When the connection has been made recommended torque must be used in order to fasten the T bolts

HTB T Bolts & HMLN Lock Nuts - Technical Details

Thead					Loa	ding Table	e for T He	ad Bolts ((kN)					Max	Torque	Loads	(Nm)
Bolt Metric	Grade	Grade 4.6 Class Steel		iteel	8	8.8 Class Steel			Stainless Steel 1.4401 / A4-50			Stainless S 1.4401 / A4		4.6 Class	8.8 Class	1.4401/	/ 1.4401/
Size	Loads	Tensile & Shear	-	Longitudi- nal Load	Tensile & Shear	-	Longitudi- nal Load		-	Longitudi- nal Load	Tensile & Shear	Bending Moment	Longitudi- nal Load	Steel	Steel	A4-50	A4-70
MC	all.F	2.2	2.0	0.10	-	-	-	2.2	1.8	0.1	3.0	3.8	0.1	•		2	
M6	FRd	3.1	2.8	0.14	-	-	-	3.1	2.5	0.1	4.2	5.3	0.2	3	-	3	4
M 8	all.F	4.0	5.0	0.20	-	-	-	4.0	4.4	0.2	5.5	9.4	0.3	8	_	8	10
IVI O	F Rd	5.6	7.0	0.28	-	-	-	5.6	6.2	0.3	7.7	13.2	0.4	0	-	0	10
M 10	all.F	6.4	10.0	0.30	13.3	24.9	1.1	6.4	8.7	0.3	8.7	18.7	0.4	15	48	15	20
IVI TO	F Rd	9.0	14.0	0.42	18.6	34.9	1.5	9.0	12.2	0.4	12.2	26.2	0.6	15	40	15	20
M 12	all.F	9.3	17.5	0.50	19.4	43.7	1.6	9.3	15.3	0.5	12.6	32.8	0.7	25	70	25	35
	F Rd	13.0	24.5	0.70	27.2	61.2	2.2	13.0	21.4	0.7	17.6	45.9	1.0	25	10	25	55
M 16	all.F	17.3	44.4	0.90	36.1	110.0	3.0	17.3	38.8	0.9	23.6	83.3	1.2	60	200	60	80
IVI TO	F Rd	24.2	62.2	1.26	50.5	154.0	4.2	24.2	54.3	1.3	33.0	116.6	1.7	00	200	00	00
M 20	all.F	27.0	86.5	1.40	56.4	216.4	4.7	27.0	75.7	1.4	36.8	162.3	1.9	120	400	120	160
10120	F Rd	37.8	121.1	1.96	79.0	303.0	6.6	37.8	106.0	2.0	51.5	227.2	2.6	120	-00	120	100
M 24	all.F	38.8	149.9	2.00	81.2	-	-	38.8	130.9	2.0	-	-	-	200	680	200	
101 24	F Rd	54.3	209.9	2.80	113.7	-	-	54.3	183.3	2.8	-	-	-	200	000	200	<u> </u>
M 30	all.F	61.7	299.9	3.20	129.0	-	-	61.7	262.4	3.2	-	-	-	400	1.400	400	-
101.50	F Rd	86.4	419.9	4.48	180.6	-	-	86.4	367.4	4.5	-	-	-	400	1.400	400	1.

								Loadir	ng Table	e For Lo	cknuts ((kN)								
Lock Nu	it Turpo	H	IMLN-28		HMLN-38			HMLN-41			HMLN-40			HMLN-50			HMLN-72			
LUCK NU	лтуре	M6	M8	M10	M8	M10	M12	M6	M8	M10	M12	M8	M10	M12	M10	M12	M16	M12	M16	M20
Safe	all.F	1.9	2.8	3.0	4.0	4.1	5.7	4.0	4.0	6.4	9.3	4.0	6.4	9.3	6.4	9.3	9.3	9.3	17.3	22.0
Load	F _{Rd}	2.7	3.9	4.2	5.6	5.7	8.0	5.6	5.6	9.0	13.0	5.6	9.0	13.0	9.0	13.0	13.0	13.0	24.2	30.8

HTB T Bolts - Product Details

Product					Т	echnical Deta	ils	
Code	Bolt Size mm	Metric M (mm)	Length L (mm)	Head Thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for Channels	Product Drawing
HTB-28-8/30	M8x30	8	30					
HTB-28-8/50	M8x50	8	50	4.0	10.50	23.0		
HTB-28-10/40	M10x40	10	40	4.0	10.50	23.0	HMPR-28/15	
HTB-28-10/60	M10x60	10	60					
HTB-38-10/40	M10x40	10	40					
HTB-38-10/50	M10x50	10	50					
HTB-38-10/70	M10x70	10	70					
HTB-38-12/50	M12x50	12	50					
HTB-38-12/60	M12x60	12	60	7.0	13.00	30.5	HMPR-38/17	с: О М
HTB-38-12/80	M12x80	12	80					
HTB-38-16/80	M16x60	16	60					
HTB-38-16/80	M16x80	16	80					b: a: L:
HTB-38-16/100	M16x100	16	100					

• HTB T bolts are stamped with HAZ or HS trademark

Product					Т	echnical Deta	ails							
Code	Bolt Size mm	Metric M (mm)	Length L (mm)	Head thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for Channels	Product Drawing						
HTB-40-10/50	M10x50	10	50											
HTB-40-10/70	M10x70	10	70											
HTB-40-12/50	M12x50	12	50											
HTB-40-12/60	M12x60	12	60	12.0	14.00	34.0	HMPR-40/25,							
HTB-40-12/80	M12x80	12	80	12.0	14.00	34.0	HMPR-H-40/22							
HTB-40-16/80	M16x60	16	60					-						
HTB-40-16/80	M16x80	16	80											
HTB-40-16/100	M16x100	16	100					9						
								S						
HTB-50-12/50	M12x50	12	50											
HTB-50-12/60	M12x60	12	60					a.						
HTB-50-12/80	M12x80	12	80											HMPR-49/30,
HTB-50-16/60	M16x60	16	60	13.0	17.50	42.0	HMPR-54/33,							
HTB-50-16/80	M16x80	16	80	10.0	11.00	12.0	HMPR-H-50/30,							
HTB-50-16/100	M16x100	16	100				HMPR-H-52/34							
HTB-50-20/80	M20x80	20	80					b: L:						
HTB-50-20/100	M20x100	20	100											
HTB-72-20/60	M20x60	20	60											
HTB-72-20/80	M20x80	20	80											
HTB-72-20/100	M20x100	20	100	17.0	22.00	58.0	HMPR-72/49							
HTB-72-24/80	M24x80	24	80											
HTB-72-24/100	M24x100	24	100											

HTB T bolts are stamped with HAZ or HS trademark

Product	Technical Details								
Code	Bolt Size	Metric	Length	Head Thick.	Head Width	Head Length	Sutaible for	Product Drawing	
0000	mm	M (mm)	L (mm)	a (mm)	b (mm)	c (mm)	Channels	. iouuot Diulinig	
		10							
HTB-41-12/50	M12x50	12	50	10.0	20.00	34.0	HMPR-S-41/22		
HTB-41-16/60	11-16/60 M16x60 16 60								
Product Code • Material:									
HTB - 28 - 8 / 30				4 Stainless stee	el 1.4401,		b: a: L:		
				DG 4.6 hot dip	galvanized ste	eel strenght cla			
	Channel type Type			DG 8.8 hot dip	galvanized ste	eel strenght cla	с <u>М</u>		

39

HMLN Lock Nuts - Product Details

	Technical Details								
Product Code	Metric Size M (mm)	Head Thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for Channels	Product Drawing			
HMLN-28-6	6								
HMLN-28-8	8	4.0	13.00	24.5	HMPR-28/15				
HMLN-28-10	10								
HMLN-38-10	10	6.0	17.50	31.5	HMPR-38/17	M			
HMLN-38-12	12					b: / O / a:			
HMLN-38-16	16					c			

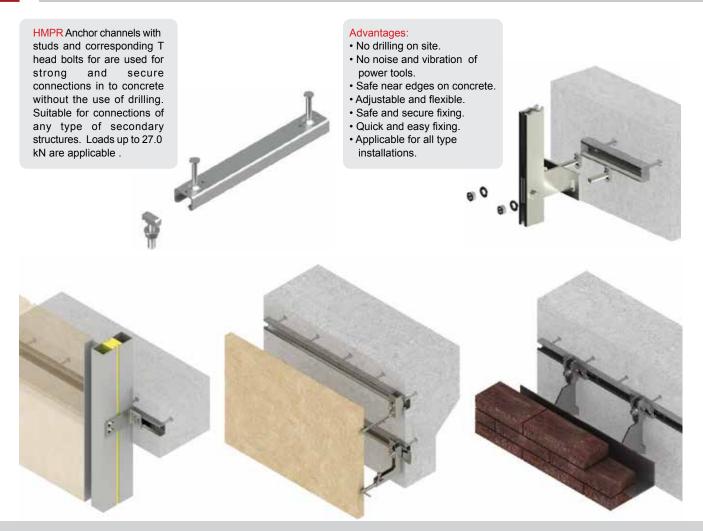
	Technical Details							
Product Code	Metric Size M (mm)	Head Thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for Channels	Product Drawing		
HMLN-40-10	10							
HMLN-40-12	12	10.8	17.00	34.5	HMPR-40/25, HMPR-H-40/22			
HMLN-40-16	16							
HMLN-50-10	10		21.0	43.5	HMPR-49/30,			
HMLN-50-12	12	11.7			HMPR-54/33, HMPR-H-50/30,			
HMLN-50-16	16				HMPR-H-52/34			
HMLN-72-12	12		31.00	62.0	HMPR-72/49	C:		
HMLN-72-16	16	22.0						
HMLN-72-20	20							

Technical details								
Bolt size mm	Head thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for channels	Product drawing			
6	6.0	20.00	34.0		and the second			
8	8.0			HMPR-S-41/22				
10	10.0							
12	12.0							
	mm 6 8 10	mm a (mm) 6 6.0 8 8.0 10 10.0	mm a (mm) b (mm) 6 6.0 8 8.0 20.00 10 10.0	Bolt size mmHead thick. a (mm)Head Width b (mm)Head Length c (mm)66.088.01010.0	Bolt size mmHead thick. a (mm)Head Width b (mm)Head Length c (mm)Sutaible for channels66.088.01010.0			

	Technical Details								
Product Code	Bolt Size mm	Head Thick. a (mm)	Head Width b (mm)	Head Length c (mm)	Sutaible for Channels	Product Drawing			
HMLN-S-41-6	6	6.0	20.00	34.0					
HMLN-S-41-8	8	8.0							
HMLN-S-41-10	10	10.0			HMPR-S-41/22				
HMLN-S-41-12	12	12.0							
						E			

Product Code

<u>HMLN</u> - <u>28</u> - <u>6</u>


Metric Channel type Type

Material:

- A4 Stainless steel W 1.4401,
- HDG hot dip galvanized steel

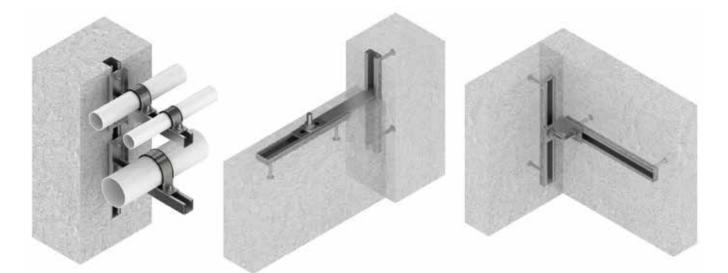
HMPR Anchor Channels - Application Examples

- Installation of curtain walls
- Installation of natural stone panels
- Installation of masonry walls

Installation of precast concrete panels

· Connection of concrete beams

· Installation of pipe systems


HMPR Anchor Channels - Application Examples

Installation of base components

Installation of stadium seats

- Installation of pipe systems
- Wall connections

Wall connections

Upper beam connection

Base connection

Lower beam connection

HFB Facade Brackets

Curtain wall facades are used more frequently in the external facade cladding for modern buildings. The curtain wall technology is the most advanced type of facade construction which are preferred because of its aesthetics and functionality. This type of cladding also offers high thermal and load performance and can be installed faster and easier than any other conventional type of claddings.

HAZ Metal designs and manufactures facade brackets for the installation of curtain wall panels on to the structure. HFB facade support brackets are used to fix longitudinal and transverse curtain wall systems. The brackets transfer the acting loads in to the structure. These brackets can be designed to adapt to any type of application with accordance to the design criteria.

HFB facade brackets are designed and dimensioned to with stand high horizontal and vertical loads. The facade brackets are available in two main categories.

The first category of facade brackets are the ones that can be fixed on the edge of the slabs. This way the tensile loads from wind are transferred in to the end of the floor slab.

The second category of facade brackets are the ones that are fixed on the top of the slab. This way the horizontal loads from wind and the vertical loads from dead load and the resultant loads are transferred in to the top of the floor slab.

The facade brackets offer great advantages when used with HMPR anchor channels. Both secure and easy connections are enables with the verified load performance values and the high adjustability properties of the HMPR anchor channels.

Advantages

• Simple and fast installation due to the adjustability of the system in all directions

• Smaller edge distances make it possible to fix close to the edge or front end of the floor slabs

• High load performance both for horizontal and vertical loads. Up to 32 kN loads possible

 Can be specially designed and dimensioned to suit various type of fixing applications

Modern high rise buildings

· Curtain wall fixing at the edge of floor slab

Curtain wall fixing at the edge of floor slab

HFB Facade Support Brackets - Product Range

Application details

•Bracket for installing curtain wall at top of slabs

 Quick and Easy Installation with hang on method

• + / - 10 mm vertical adjustment through incorporated set screws on the bracket

 In and out adjustability through the slotted holes. Fixing at desired point is made with serrated washers

 Lateral adjustability made with on the cast in channel. Fixing is made with two T head bolts

 Can be designed to take wind loads of up to 24 kN

· Can be designed to take dead loads of up to 7 kN

 Available in stainless steel and hot dip galvanized mild steel

HFB-LH Facade Support Bracket

HFB-AP Facade Support Bracket

HFB-MT Facade Support Bracket

Application details

•Brackets for installing curtain walls at edge of slabs

 Adjustability made through slot holes. Position fixing is made with serrated washers

· Easy fixing with uncomplicated parts

· Available in stainless steel and galvanized steel

HFB-MT Facade Support Bracket

HFB-MT Facade Support Bracket

HAZ-RBX Recess Box Anchor Channels

Unitised curtain systems are often installed at the top of the slab. This creates a problem in which the brackets used to install the curtain wall panels stand out above the finishing line of the floor.

As a result, usable area is reduced and aesthetics is compromised. The use of the HAZ-RBX Recess Box anchor channels, provide a solution for this problem.

The HAZ -RBX anchor channels are supplied with the suitable anchor channel which creates a void in the concrete that allows the bracket to be installed below the finished floor level.

The HAZ-RBX channel is an assembled box made out of galvanized steel or epoxy paint coated steel recess box, that is tack welded with a suitable anchor channel. The type and size of the anchor channel is determined according to the design loads of the curtain wall application.

The box is filled with foam to avoid access of concrete in to the void. There are nail holes on the steel box to allow secure connection of the box on to wooden form work.

After the installation of the HAZ-RBX anchor channels on to the form work is completed, concrete is poured leaving the top of the box flush with the concrete pour.

Once the concrete is dried, the foam filler is pulled out and the void is exposed. The curtain wall support bracket is installed on to the anchor channels using T head bolts.

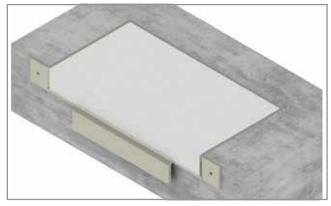
After the installation is finished and the support bracket is tightened, the void is filled with concrete or grout. The bracket is covered and the void is completely filled leaving a flush finished floor.

Features and benefits:

• The HAZ-BRX Recess box channel is manufactured with tight tolerances

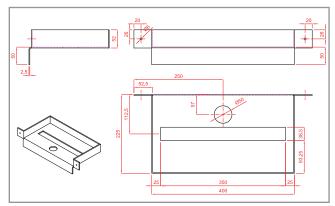
• Dimensions can be customized to application requirements

Nail holes are available for fixing the box to wooden form work


• Foam filler is provided with an exact fit to avoid concrete ingress

Anchor channels are tack welded to the recess box

Corrosion resistant epoxy paint coating or hot dip galvanizing made to the recess box


• HAZ-RBX Recess Box Anchor channels can be supplied with any type of anchor channels

• HAZ-RBX Recess Box Anchor channels are supplied with foam filling to avoid concrete recess in to the void

• HAZ-RBX Recess Box Anchor channels are used for curtain wall installation at the top of the slab

 HAZ-RBX Recess Box Anchor channels can be custom made. The above dimensions (mm) are for HMPR -CE- 49/30-350 type channel

Anchor Channels Application Pictures

Anchor channels are in all kind of connections in to concrete. All types of facade applications can be executed using anchor channels. This is preferred due to its easy and fast installation. Below are pictures taken from anchor channels applications used in the wide construction applications.

Brick work cladding fixed on anchor anchor channels

Curtain wall cladding fixed on anchor channels on the top of slab

Various anchor channel applications used on areas such as, electric utility, water management and in tunnels

Stadium seating fixed on anchor channels

HAZ METAL FIXING SYSTEMS

References

Infinity Tower, Brisbane

Adnoc HQ, Abu Dhabi

The Ruby Tower, Mumbai

Telekom HQ, Ankara

Dolphin Tower, Ankara

Ciftci Towers, Istanbul

Emaar Square, Istanbu

Centre for Technology and Design, St Polten

Awly Building, Christchurch

References

Ang Mo Kio ITE Headquarters, Singapore

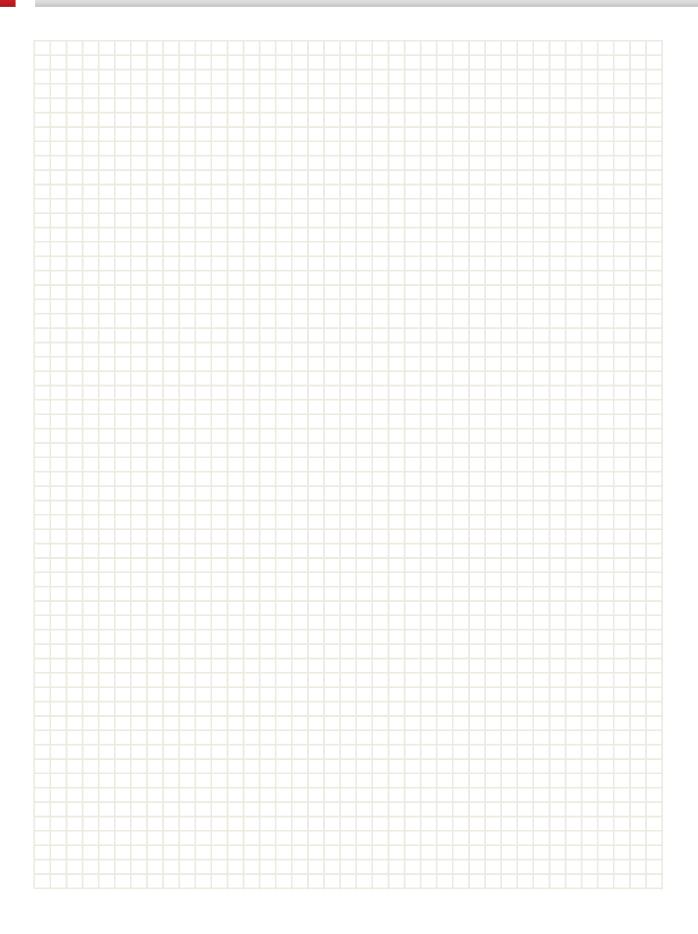
Hyundai Innovation Centre, Singapore

Conrad Hotel, Dubai

Ritz Carlton Hotel,Kuala Lumpur

Rasuna Tower, Jakarta

Orchard Emerald, Singapore



Dorsett Hotel, Singapore

Notes

Г

HAZ Metal Sanayi ve Ticaret A.S. is a member of HAZ Group of Companies

HAZ Metal is certified with integrated management systems by TUV SUD for ISO 9001 & OHSAS 18001

HAZ PAZARLAMA İÇ & DIŞ TİC. A.Ş. İçerenköy Mh. Çayır Cd. Özce Center No:3 K:12 34752 Ataşehir İstanbul, TÜRKİYE Tel : +90 (0) 216 410 72 06 Fax : +90 (0) 216 410 71 41 www.hazpazarlama.com hazpazarlama@hazgrp.com

HAZ INTERNATIONAL LTD. 154 Great North Road Hatfield Herts. AL9 5JN England Tel : +44 (0) 1707 - 260 180 Fax : +44 (0) 1707 - 260 190 www.hazuk.co.uk haz@hazuk.co.uk

HAZ EGYPT LTD Villa no.29-Third Floor.St.no.270 New Maadi, Cairo, Egypt Tel : +20 (2) 2447 09 85 www.hazeg.com info@hazeg.com HAZ METAL SANAYİ VE TİCARET A.Ş. Şehit Er Çıracı Caddesi No. 10 Akçay Sanayi Bölgesi 31200 İskenderun Hatay, TÜRKİYE Tel : +90 (0) 326 626 20 50 Fax : +90 (0) 326 626 20 45 www.hazmetal.com info@hazmetal.com

HAZ MARBLE INDUSTRY & TRADE LLC First Gulf Building Corniche Street 2nd Floor, Flat No. 202 P.O. Box 5721 Abu Dhabi, United Arab Emirates Tel :+971 (0) 2 622 07 00 Fax :+971 (0) 2 622 17 00 www.hazuae.ae hazuae@hazmarbleuae.ae

HAZ MARBLE QATAR WLL P.O.BOX 31296 C-Ring road Doha, Qatar Tel : +974 (4) 467 26 13-47 Fax : +974 (4) 467 47 49 www.hazqatar.com hazdoha@hazqatar.com HAZ METAL DEUTSCHLAND GmbH Leonhard Karl Strasse 29 97877 Wertheim, Deutschland Tel : +49 (0) 9342 93 59 0 Fax : +49 (0) 9342 93 59 29 www.haz.eu info@haz.eu

HAZ ASIA PACIFIC PTE LTD Blk 22 Woodlands Link #01-65 Singapore 738734 Tel: +65 6853 7681 Fax: +65 6752 9582 www.hazapac.com info@hazapac.com

HAZ RUS LTD 117036, UI, Profsoyuznaya Dom 3 (office 531) Moscow, Russian Federation Tel :+7 (926) 672 31 84 info@hazrus.ru www.hazrus.ru

Always at the forefront of fixing technology, HAZ METAL has earned a reputation as the leaders in fixing systems innovation and is regarded as the one to follow. HAZ METAL fixing systems of today become the standard of tomorrow.

HAZ METAL combines the very latest international technology with its own research and development team to establish a technical excellence within the industry. HAZ METAL readily embraces the responsibility of a major producer and shares its expertise with problem solving solutions.